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Chapter 1

General Overview

K1-3

EMS2

1.1 What is Biostatistics?

· Statistics applied to biomedical problems

· Decision making in the face of uncertainty or variability

· Design and analysis of experiments; detective work in observational studies
(in epidemiology, outcomes research, etc.)

· Attempt to remove bias or find alternative explanations to those posited by
researchers with vested interests

· Experimental design, measurement, description, statistical graphics, data
analysis, inference

1.2 Types of Data Analysis and Inference

· Description: what happened to past patients

10



CHAPTER 1. GENERAL OVERVIEW 11

· Inference from specific (a sample) to general (a population)

– Hypothesis testing: test a hypothesis about population or long-run effects

– Estimation: approximate a population or long term average quantity

– Prediction: predict the responses of other patients like yours based on
analysis of patterns of responses in your patients

1.3 Types of Measurements by Their Role in the Study
K3

· Response variable (clinical endpoint, final lab measurements, etc.)

· Independent variable (predictor or descriptor variable) — something mea-
sured when a patient begins to be studied, before the response; often not
controllable by investigator, e.g. sex, weight, height, smoking history

· Adjustment variable (confounder) — a variable not of major interest but one
needing accounting for because it explains an apparent effect of a variable of
major interest or because it describes heterogeneity in severity of risk factors
across patients

· Experimental variable, e.g. the treatment or dose to which a patient is ran-
domized; this is an independent variable under the control of the researcher

Table 1.1: Common alternatives for describing independent and response variables

Response variable Independent variable
Outcome variable Exposure variable
Dependent variable Predictor variable
y-variables x-variable
Case-control group Risk factor

Explanatory variable
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1.4 Types of Measurements According to Coding
K3

EMS2.2· Binary: yes/no, present/absent

· Categorical (nominal, polytomous, discrete): more than 2 values that are not
necessarily in special order

· Ordinal: a categorical variable whose possible values are in a special order,
e.g., by severity of symptom or disease; spacing between categories is not
assumed to be useful

· Count: a discrete variable that (in theory) has no upper limit, e.g. the number
of ER visits in a day, the number of traffic accidents in a month

· Continuous: a numeric variable having many possible values representing
an underlying spectrum

· Continuous variables have the most statistical information (assuming the raw
values are used in the data analysis) and are usually the easiest to standard-
ize across hospitals

· Turning continuous variables into categories by using intervals of values is
arbitrary and requires more patients to yield the same statistical information
(precision or power)

· Errors are not reduced by categorization unless that’s the only way to get a
subject to answer the question (e.g., incomea

aBut note how the Census Bureau tries to maximize the information collected. They first ask for income in dollars. Subjects refusing to answer
are asked to choose from among 10 or 20 categories. Those not checking a category are asked to choose from fewer categories.



CHAPTER 1. GENERAL OVERVIEW 13

1.5 Random Variables

· A potential measurement X

· X might mean a blood pressure that will be measured on a randomly chosen
US resident

· Once the subject is chosen and the measurement is made, we have a sam-
ple value of this variable

· Statistics often uses X to denote a potentially observed value from some
population and x for an already-observed value (i.e., a constant)



Chapter 2

Descriptive Statistics and Distributions

EMS3

2.1 Distributions
K4

The distribution of a random variable X is a profile of its variability and other
tendencies. Depending on the type of X, a distribution is characterized by the
following.

· Binary variable: the probability of “yes” or “present” (for a population) or the
proportion of same (for a sample).

· k-Category categorical (polytomous, multinomial) variable: the probability
that a randomly chosen person in the population will be from category i, i =

1, . . . , k. For a sample, use k proportions or percents.

· Continuous variable: any of the following 4 sets of statistics

– probability density: value of x is on the x-axis, and the relative likelihood
of observing a value “close” to x is on the y-axis. For a sample this yields
a histogram.

14



CHAPTER 2. DESCRIPTIVE STATISTICS AND DISTRIBUTIONS 15

– cumulative probability distribution: the y-axis contains the probability of
observing X ≤ x. This is a function that is always rising or staying
flat, never decreasing. For a sample it corresponds to a cumulative his-
tograma

– all of the quantiles or percentiles of X

– all of the moments of X (mean, variance, skewness, kurtosis, . . . )

– If the distribution is characterized by one of the above four sets of num-
bers, the other three sets can be derived from this set

· Knowing the distribution we can make intelligent guesses about future obser-
vations from the same series, although unless the distribution really consists
of a single point there is a lot of uncertainty in predicting an individual new
patient’s response. It is less difficult to predict the average response of a
group of patients once the distribution is known.

· At the least, a distribution tells you what proportion of patients you would
expect to see whose measurement falls in a given interval.

2.1.1 Distribution Shapes

2.2 Descriptive Statistics
K4

EMS3.2-3.3

2.2.1 Categorical Variables

· Proportions of observations in each category
Note: The mean of a binary variable coded 1/0 is the proportion of ones.

· For variables representing counts (e.g., number of comorbidities), the mean
aBut this empirical cumulative distribution function can be drawn with no grouping of the data, unlike an ordinary histogram.
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Figure 2.1: Example probability density (a) and cumulative probability distribution (b)

is a good summary measure (but not the median)

· Modal (most frequent) category

2.2.2 Continuous Variables

Denote the sample values as x1, x2, . . . , xn

Measures of Location

“Center” of a sample

· Mean: arithmetic average

x̄ =
1

n

n∑

i=1

xi

Population mean µ is the long-run average (let n→∞ in computing x̄)

– center of mass of the data (balancing point)
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Symmetrical
 Bell−shaped

 

Density curve

Figure 2.2: Example of a distribution that is symmetric about the mean (blue line). Sample from a
Normal distribution.
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Positively Skewed
 Skewed to the right

 

Figure 2.3: Example of a distribution that is skewed to the right. Sample is from a log-Normal
distribution.
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Negatively skewed
 Skewed to the left

 

Figure 2.4: Example of a distribution that is skewed to the left
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Bimodal

 

Figure 2.5: Example of a distribution that is bimodal (has two peaks). Sample is from a mixture of
two Normal distributions.
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– highly influenced by extreme values even if they are highly atypical

· Median: middle sorted value, i.e., value such that 1
2 of the values are below

it and above it

– always descriptive

– unaffected by extreme values

– not a good measure of central tendency when there are heavy ties in the
data

– if there are heavy ties and the distribution is limited or well-behaved, the
mean often performs better than the median (e.g., mean number of dis-
eased fingers)

· Geometric mean: hard to interpret and effected by low outliers; better to use
median

Quantiles

Quantiles are general statistics that can be used to describe central tendency,
spread, symmetry, heavy tailedness, and other quantities.

· Sample median: the 0.5 quantile or 50th percentile

· Quartiles Q1, Q2, Q3: 0.25 0.5 0.75 quantiles or 25th, 50th, 75th percentiles

· Quintiles: by 0.2

· In general the pth sample quantile xp is the value such that a fraction p of the
observations fall below that value
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· pth population quantile: value x such that the probability that X ≤ x is p

Spread or Variability

· Interquartile range: Q1 to Q3

Interval containing 1
2 of the subjects

Meaningful for any continuous distribution

· Other quantile intervals

· Variance (for symmetric distributions): averaged squared difference between
a randomly chosen observation and the mean of all observations

s2 =
1

n− 1

n∑

i=1

(xi − x̄)2

The −1 is there to increase our estimate to compensate for our estimating
the center of mass from the data instead of knowing the population mean.b

· Standard deviation: s — √ of variance

– √ of average squared difference of an observation from the mean

– can be defined in terms of proportion of sample population within ± 1 SD
of the mean if the population is normal

· SD and variance are not useful for very asymmetric data, e.g. “the mean
hospital cost was $10000 ± $15000”

· range: not recommended because range ↑ as n ↑ and is dominated by a
single outlier

· coefficient of variation: not recommended (depends too much on how close
the mean is to zero)

bx̄ is the value of µ such that the sum of squared values about µ is a minimum.
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2.3 Graphs
K4.2-4.6

A17-20

2.3.1 Categorical Variables

· pie chart

– high ink:information ratio

– optical illusions (perceived area or angle depends on orientation vs. hori-
zon)

– hard to label categories when many in number

· bar chart

– high ink:information ratio

– hard to depict confidence intervals (one sided error bars?)

– hard to interpret if use subcategories

– labels hard to read if bars are vertical

· dot chart

– leads to accurate perception

– easy to show all labels; no caption needed

– allows for 3 levels of categorization (see Figure 2.6)

∗ multi-panel display for multiple major categorizations

∗ lines of dots arranged vertically within panel
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∗ categories within a single line of dots

– easy to show 2-sided error bars

· Avoid chartjunk such as dummy dimensions in bar charts, rotated pie charts,
use of solid areas when a line suffices

2.3.2 Continuous Variables

Distributions

· histogram showing relative frequencies

– requires arbitrary binning of data

– not optimal for comparing multiple distributions

· cumulative distribution function: proportion of values ≤ x vs. x (Figure 2.7)
Can read all quantiles directly off graph.

· box plot: quartiles plus mean. Good way to compare many groups (Figure
2.8)
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Figure 2.7: Empirical cumulative distributions of baseline variables stratified by treatment in a ran-
domized controlled trial.
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Figure 2.8: Box plots showing the distribution of serum creatinine stratified by major diagnosis.
Dot: mean; vertical line: median; large box: interquartile range. The 0.05 and 0.95 quantiles
are also shown, which is not the way typical box plots are drawn but is perhaps more useful.
Asymmetry of distributions can be seen by both disagreement between Q3−Q2 and Q2−Q1 and
by disagreement between Q2 and x̄.

Relationships

· When response variable is continuous and descriptor (stratification) vari-
ables are categorical, multi-panel dot charts, box plots, multiple cumulative
distributions, etc., are useful.

· Two continuous variables: scatterplot (e.g., Rosner Figure 2.12, EMS Figure
3.9)
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2.3.3 Graphs for Summarizing Results of Studies

· Dot charts with optional error bars (for confidence limits) can display any
summary statistic (proportion, mean, median, mean difference, etc.)

· It is not well known that the confidence interval for a difference in two means
cannot be derived from individual confidence limits.c

Show individual confidence limits as well as actual CLs for the difference.

Glycated Hemoglobin

5.0 5.5 6.0 6.5

Female

Male

Difference

-0.25  0.25  0.75

Figure 2.9: Means and nonparametric bootstrap 0.95 confidence limits for glycated hemoglobin for
males and females, and confidence limits for males - females. Lower and upper x-axis scales
have same spacings but different centers. Confidence intervals for differences are generally
wider than those for the individual constituent variables.

· For showing relationship between two continuous variables, a trend line or
regression model fit, with confidence bands

cIn addition, it is not necessary for two confidence intervals to be separated for the difference in means to be significantly different from zero.
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2.4 Tables

· Binary variables: don’t need to show both proportions

· Make logical choices for independent and dependent variables.
E.g., less useful to show proportion of males for patients who lived vs. those
who died than to show proportion of deaths stratified by sex.

· Continuous variables

– to summarize distributions of raw data: 3 quartiles
recommended format: 35 50 67 or 35/50/67

– summary statistics: mean or median and confidence limits (without as-
suming normality of data if possible)

· Show number of missing values

· Add denominators when feasible

Table 2.1: Descriptive Statistics: Demographic and Clinical variables

N
Age 27 28 32 52

C reactive protein 27 1.0 1.8 10.1

Fecal Calprotectin 26 128 754 2500

Gender 27
Female 52% 14

27

Location of colitis 27
Left side 41% 11

27

Middle 52% 14

27

Right side 7% 2

27

a b c represent the lower quartile a, the median b, and the upper quartile c for continuous variables.
N is the number of non–missing values.
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2.5 Bar Plots with Error Bars

· “Dynamite” Plots

· Height of bar indicates mean, lines represent standard error

· High ink:information ratio

· Hide the raw data, assume symmetric confidence intervals

· Replace with

– Dot plot (smaller sample sizes)

– Box plot (larger sample size)
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0

Placebo 5mg

Pre treatment
Post treatment

Figure 2.10: Bar plot with error bars or “Dynamite” plot

· Can Reproduce Placebo and 5mg in Figure 2.10 using two possible data
structures

– Symmetric plasma concentrations about the mean
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– “Responders” and “Non-responders” to folate

· Identical dynamite plots

· Differences shown in dot plots

· Other options

· Biostatistics TWiki

– http://biostat.mc.vanderbilt.edu/DynamitePlots
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2.5.1 Symmetric Observations
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Figure 2.11: Dynamite plot where underlying data is symmetric about the mean
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Figure 2.12: Dot plot where underlying data is symmetric about the mean
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Figure 2.13: Box plot where underlying data is symmetric about the mean
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2.5.2 Responder and Non-Responders
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Figure 2.14: Dynamite plot where underlying data contains responder and non-responders to folate
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Figure 2.15: Dot plot where underlying data contains responder and non-responders to folate
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Figure 2.16: Dot plot with different colors for gender
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Figure 2.17: Mixture of dot plot and box plot



Chapter 3

Hypothesis Testing

3.1 Hypotheses

· Hypothesis: usually a statement to be judged of the form
“population value = specified constant”

– µ = 120mmHg

– µ1 − µ2 = 0mmHg

– Correlation between wealth and religiosity = 0

· Null hypothesis is usually a hypothesis of no effect but can be H0 : µ =

constant or H0 : Probability of heads = 1
2 ;

H0 is often a straw man; something you hope to disprove

· Alternative hypothesis: H1; e.g.: H1 : µ 6= 120mmHg

· One-sided hypothesis (tested by 1-tailed test): H1 is an inequality in one
direction (H1 : µ > 120mmHg)

39
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· Two-sided hypothesis (2-tailed test, most common type): H1 involves values
far from the hypothesized value in either direction

3.2 Branches of Statistics

· Classical (frequentist or sampling statistics):

– Emphasizes (overemphasizes?) hypothesis testing

– Assumes H0 is true

– Conceives of data as one of many datasets that might have happened

– See if data are consistent with H0

– Are data extreme or unlikely if H0 is really true?

– Proof by contradiction: if assuming H0 is true leads to results that are
“bizarre” or unlikely to have been observed, casts doubt on premise

– Evidence summarized through a single statistic capturing a tendency of
data, e.g., x̄

– Look at probability of getting a statistic as or more extreme than the cal-
culated one (results as or more impressive than ours) if H0 is true

– If this statistic has a low probability of being observed to be this extreme
we say that if H0 is true we have acquired data that are very improbable,
i.e., have witnessed a low probability event

– Then evidence mounts against H0 and we might reject it
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– A failure to reject does not imply that we have gathered evidence in favor
of H0 — many reasons for studies to not be impressive, including small
sample size (n)

– Ignores clinical significance

· Classical parametric statistics: assumes the data to arise from a certain
distribution, often the normal (Gaussian distribution)

· Nonparametric statistics: does not assume a data distribution; generally
looks at ranks rather than raw values

· Bayesian statistics:

– Computes the probability that a clinically interesting statement is true,
e.g. that the new drug lowers population mean SBP by at least 5mmHg,
given what we observed in the data

– More natural and direct approach but requires more work

– Can formally incorporate knowledge from other studies as well as skep-
ticism from a tough audience you are trying to convince to use a therapy

– Starting to catch on (only been available for about 240 years) and more
software becoming available

· We will deal with classical parametric and nonparametric statistical tests be-
cause of time

3.3 Errors in Hypothesis Testing
K7.5.A-7.5.B

· Can attempt to reject a formal hypothesis or just compute P -value
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· Type I error: rejecting H0 when it is true
α is the probability of making this error (typically set at α = 0.05—for weak
reasons)

· Type II error: failing to reject H0 when it is false
probability of this is β

True state of H0

Decision H0 true H0 false
Reject H0 Type I error (α) Correct
Do Not Reject H0 Correct Type II error (β)

· Power: 1− β: probability of (correctly) rejecting H0 when it is false

A P -value is something that can be computed without speaking of errors. It is
the probability of observing a statistic as or more extreme than the observed one
if H0 is true, i.e., if the population from which the sample was randomly chosen
had the characteristics posited in the null hypothesis.

3.4 One Sample Test for Mean

3.4.1 Test

· Assuming continuous response from a normal distribution

· One sample tests for µ = constant are unusual except when data are paired,
e.g., each patient has a pre– and post–treatment measurement and we are
only interested in the mean of post - pre values

· t tests in general:

t =
estimate - hypothesized value

standard deviation of numerator
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· The standard deviation of a summary statistic is called its standard error,
which is the √ of the variance of the statistic

· The one-sample t statistic for testing a single population mean against a
constant µ0 (H0: µ = µ0; often µ0 = 0) is

t =
x̄− µ0

se

where se = s√
n
, is the standard error of the mean (SEM) and x̄ is the sample

mean

· When your data comes from a normal distribution and H0 holds, the t ratio
follows the t distribution

· With small sample size (n), the t ratio is unstable because the sample stan-
dard deviation (s) is not precise enough in estimating the population standard
deviation (σ; we are assuming that σ is unknown)

· This causes the t distribution to have heavy tails for small n

· As n ↑ the t distribution becomes the normal distribution with mean zero and
standard deviation one

· The parameter that defines the particular t distribution to use as a function
of n is called the degrees of freedom or d.f.

· d.f. = n - number of means being estimated

· For one-sample problem d.f. = n− 1

· Symbol for distribution tn−1
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Figure 3.1: Comparison of probability densities for t2, t5, t50, and Normal distributions

· Two-tailed P -value: probability of getting a value from the tn−1 distribution as
big or bigger in absolute value than the absolute value of the observed t ratio

· Computer programs can compute the P -value given t and n.a See the
course web site or go to www.anu.edu.au/nceph/surfstat/surfstat-home/

tables.html for an interactive P and critical value calculator for common
distributions.

– don’t say “P < something” but instead P = something

· In the old days tables were used to provide critical values of t, i.e., a value c
of t such that Prob[|t| > c] = α for “nice” α such as 0.05, 0.01.

· Denote the critical value by tn−1;1−α/2 for a 2-tailed setup

· For large n (say n ≥ 500) and α = 0.05, this value approximates the value
from the normal distribution, 1.96

· Example: We want to test if the mean tumor volume is 190 mm3 in a popu-
aIf the software has a function, say tcdf for the cumulative distribution function for the t distribution, the 2-tailed P -value would be obtained

using a command like 2*(1-tcdf(abs(t),n-1)).
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lation with melanoma, H0 : µ = 190 versus H1 : µ 6= 190.

x̄ = 181.52, s = 40, n = 100, µ0 = 190

t =
181.52− 190

40/
√

100
= −2.12

t99,.975 = 1.984→ reject at α = .05

P = 0.037

3.4.2 Power and Sample Size

· Power ↑ when

– allow larger type I error (α; tradeoff between type I and II errors)

– true µ is far from µ0

– σ ↓

– n ↑

· Power for 2-tailed test is a function of µ, µ0 and σ only through |µ− µ0|/σ

· Sample size to achieve α = 0.05, power = 0.9 is approximately

n = 10.51

[
σ

µ− µ0

]2

· Some power calculators are at statpages.org/#Power

· Better: PS program by Dupont and Plummer http://biostat.mc.vanderbilt.
edu/PowerSampleSize

· Example: The mean forced expiratory volume (FEV) in a population of asth-
matics is 2.5 liters per second and the population standard deviation is as-
sumed to be 1. Determine the number of subjects needed if a new drug is
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expected to increase FEV to 3.0 liters per second (α = .05, β = 0.1)

µ = 2.5, µ0 = 3, σ = 1

n = 10.51

[
1

2.5− 3

]2
= 42.04

– Rounding up, we need 43 subjects to have 90% power (42 subjects would
have less than 90% power)

3.4.3 Confidence Interval
A28-29

A 2-sided 1− α confidence interval for µ is

x̄± tn−1,1−α/2 × se

The t constant is the 1− α/2 level critical value from the t-distribution with n− 1

degrees of freedom. For large n it equals 1.96 when α = 0.05.

A rough way to interpret this is that we are 0.95 confident that the unknown µ lies
in the above interval. The exact way to say it is that if we were able to repeat the
same experiment 1000 times and compute a fresh confidence interval for µ from
each sample, we expect 950 of the samples to actually contain µ. Difficulties in
providing exact interpretations of confidence intervals has driven many people
to Bayesian statistics.

The 2-sided 1 − α CL includes µ0 if an only if a test of H0 : µ = µ0 is rejected at
the α level in a 2-tailed test.

· If a 0.95 CL does not contain zero, we can reject H0 : µ = 0 at the α = 0.05
significance level

1− α is called the confidence level or confidence coefficient.

3.4.4 Sample Size for a Given Precision
A139-148

· May want to estimate µ to within a margin of error of ±δ with 0.95 confidence
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· “0.95 confident” that a confidence interval includes the true value of µ

· Width of confidence interval is 2δ

n =

[
tn−1,1−α/2se

δ

]2

· If n is large enough and α = 0.05, required n = 3.84[se
δ
]2

· Example: if want to be able to nail down µ to within ±1mmHg when the
patient to patient standard deviation in blood pressure is 10mmHg, n ∼ 384

· Advantages of planning for precision rather than powerb

– do not need to guess the true population value

– many studies are powered to detect a miracle and nothing less; if a mir-
acle doesn’t happen, the study provides no information

– planning on the basis of precision will allow the resulting study to be
interpreted if the P -value is large, because the confidence interval will
not be so wide as to include both clinically significant improvement and
clinically significant worsening

3.5 One Sample Method for a Probability
A:45-56

3.5.1 Test

· Estimate a population probability p with a sample probability p̂

· Approximate 2-sided test of H0 : p = p0 obtained by computing a z statistic
bSee Borenstein M: J Clin Epi 1994; 47:1277-1285.
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· A z-test is a test assuming that the test statistic has a normal distribution; it
is a t-test with infinite (∞) d.f.

z =
p̂− p0√

p0(1− p0)/n

· The z-test follows the same general form as the t-test

z =
estimate - hypothesized value

standard deviation of numerator

· Example: n = 10 tosses of a coin, 8 heads; H0: coin is fair (p0 = 1
2
)

z =
.8− .5

√
(1

2)(
1
2)/10

= 1.897

· P -value = 2× area under a normal curve to the right of 1.897 = 2× 0.0289 =

0.058 (this is also the area under the normal curve to the right of 1.897 + the
area to the left of −1.897)

· Approximate probability of getting 8 or more or 2 or fewer heads if the coin
is fair is 0.058

· Need to use exact methods if p or n is small

3.5.2 Power and Sample Size

· Power ↑ as n ↑, p departs from p0, or p0 departs from 1
2

· n ↓ as required power ↓ or p departs from p0

3.5.3 Sample Size for Given Precision

· Approximate 0.95 CL: p̂± 1.96
√

p̂(1− p̂)/n
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· Assuming p is between 0.3 and 0.8, it would not be far off to use the worst
case standard error

√
1/(4n) when planning

· n to achieve a margin of error δ in estimating p:

n =
1

4

[
1.96

δ

]2
=

0.96

δ2

· Example: δ = .1 → n = 96 to achieve a margin of error of ±0.1 with 0.95
confidence

3.6 Paired Data and One-Sample Tests
A31-32

· To investigate the relationship between smoking and bone mineral density,
Rosner presented a paired analysis in which each person had a nearly per-
fect control which was his or her twin

· Data were normalized by dividing differences by the mean density in the twin
pair (need to check if this normalization worked)

· Computed density in heavier smoking twin minus density in lighter smoking
one

· Mean difference was −5% with se=2.0% on n = 41

· The t statistic we’ve been using works here, once within-pair differences are
formed

· H0 : mean difference between twins is zero (µ0 = 0)

t40 =
x̄− µ0

se
= −2.5

P = 0.0166
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3.7 Two Sample Test for Means
K5.5, A28-35

· Two groups of different patients (unpaired data)

· Much more common than one-sample tests

· As before we are dealing for now with parametric tests assuming the raw
data arise from a normal distribution

· We assume that the two groups have the same spread or variability in the
distributions of responsesc

3.7.1 Test

· Test whether population 1 has the same mean as population 2

· Example: pop. 1=all patients with a certain disease if given the new drug,
pop. 2=standard drug

· H0 : µ1 = µ2 (this can be generalized to test µ1 = µ2 + δ, i.e., µ1 − µ2 = δ).
The quantity of interest or QOI is µ1 − µ2

· 2 samples, of sizes n1 and n2 from two populations

· Two-sample (unpaired) t-test assuming normality and equal variances—recall
that if we are testing against an H0 of no effect , the form of the t test is

t =
point estimate of QOI

se of numerator

· Point estimate QOI is x̄1 − x̄2
cRosner covers the unequal variance case very well. As nonparametric tests have advantages for comparing two groups and are less

sensitive to the equal spread assumption, we will not cover the unequal variance case here.
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· Variance of the sum or difference of two independent means is the sum of
the variance of the individual means

· This is σ2

n1

+ σ2

n2

= σ2[ 1
n1

+ 1
n2

]

· Need to estimate the single σ2 from the two samples

· We use a weighted average of the two sample variances:

s2 =
(n1 − 1)s2

1 + (n2 − 1)s2
2

n1 + n2 − 2

· True standard error of the difference in sample means: σ
√

1
n1

+ 1
n2

· Estimate: s
√

1
n1

+ 1
n2

, so

t =
x̄1 − x̄2

s
√

1
n1

+ 1
n2

· d.f. is the sum of the individual d.f., n1 + n2 − 2, where the −2 is from our
having to estimate the center of two distributions

· If H0 is true t has the tn1+n2−2 distribution

· To get a 2-tailed P -value we compute the probability that a value from such
a distribution is farther out in the tails of the distribution than the observed t
value is (we ignore the sign of t for a 2-tailed test)

· Example: n1 = 8, n2 = 21, s1 = 15.34, s2 = 18.23, x̄1 = 132.86, x̄2 = 127.44

s2 =
7(15.34)2 + 20(18.23)2

7 + 20
= 307.18

s =
√

307.18 = 17.527
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se = 17.527

√√√√1

8
+

1

21
= 7.282

t =
5.42

7.282
= 0.74

on 27 d.f.

· P = 0.466 using the Surfstat t-distribution calculator

· Chance of getting a difference in means as larger or larger than 5.42 if the
two populations really have the same means is 0.466

· → little evidence for concluding the population means are different

3.7.2 Power and Sample Size

· Power increases when

– ∆ = |µ1 − µ2| ↑

– n1 ↑ or n2 ↑

– n1 and n2 are close

– σ ↓

– α ↑

· Power depends on n1, n2, µ1, µ2, σ approximately through

∆

σ
√

1
n1

+ 1
n2
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· Note that when computing power using a program that asks for µ1 and µ2

you can just enter 0 for µ1 and enter ∆ for µ2, as only the difference matters

· Often we estimate σ from pilot data, and to be honest we should make ad-
justments for having to estimate σ although we usually run out of gas at this
point

· Easiest to use the power calculator at statpages.org/#Power

· Example:

Get a pooled estimate of σ using
√

15.342+18.232

2 = 16.847 when ∆ = 5, n1 =
n2 = 100, α = 0.05
Program computed power of 0.550 compared to Rosner’s 0.555 (the pro-
gram on the Web page probably uses more accurate formulas that are diffi-
cult to use manually)

· Sample size depends on k = n2

n1

, ∆, power, and α

· Sample size ↓ when

– ∆ ↑

– k → 1.0

– σ ↓

– α ↑

– required power ↓

· An approximate formula for required sample sizes to achieve power = 0.9
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with α = 0.05 is

n1 =
10.51σ2(1 + 1

k
)

∆2

n2 =
10.51σ2(1 + k)

∆2

· Example using web page:
Does not allow unequal n1 and n2; use power=0.8, α = 0.05, µ1 = 132.86, µ2 =

127.44, σ = 16.847

· Result is 153 in each group (total=306) vs. Rosner’s n1 = 108, n2 = 216,
total=324. The price of having unequal sample sizes was 18 extra patients.

3.7.3 Confidence Interval
A28-35

x̄1 − x̄2 ± tn1+n2−2,1−α/2 × s×
√√√√ 1

n1
+

1

n2

is a 1 − α CL for µ1 − µ2, where s is the pooled estimate of σ, i.e., s
√

. . . is the
estimate of the standard error of x̄1 − x̄2

3.7.4 Sample Size for a Given Precision

To design a study that will nail down the estimate of µ1 − µ2 to within ±δ with
1 − α confidence when n1 = n2 = n, and when n is large enough so that the
critical value t2n−2,1−α/2 may be approximated by the critical value from the normal
distribution, say z (z = 1.96 when α = 0.05):

n = 2

[
zσ

δ

]2

When α = 0.05, n = 7.68[σδ ]
2
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3.7.5 Checking Assumptions of the t-test

· Box plot (one box for each of 2 groups): look for equal spread (IQR)

· Informally compare s1 and s2
d

· Various plots for assessing normality of data from each groupe

3.8 The Problem with Hypothesis Tests and P -values

3.8.1 Hypothesis Testing

· Existence of ESP is a hypothesis

· Assessing effects of drugs, procedures, devices involves estimation

· Many studies powered to detect huge effect

· If effect is not huge, no information from study

3.8.2 P -Values
A15-24

· Only provide evidence against a null hypothesis, never evidence for some-
thing

· Probability of a statistic as impressive as yours if H0 true

· Not a probability of an effect or difference (same problem with sensitivity and
specificity)

dRosner 8.6 shows how to make formal comparisons, but beware that the variance ratio test depends on normality, and it may not have
sufficient power to detect important differences in variances.

eThere are formal tests of normality but in smaller samples these may have insufficient power to detect important nonnormality.
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· No conclusion possible from large P -values

· Cannot conclude clinical relevance from small P

· Adjustment of P -values for multiple tests is controversial and there is insuffi-
cient consensus on how to choose an adjustment method

3.8.3 How Not to Present Results

· P = 0.02 — let’s put this into clinical practice ignoring the drug’s cost or
clinical effectiveness

· P = 0.4 — this drug does not kill people

· P = 0.2 but there is a trend in favor of our blockbuster drug

· The observed difference was 6mmHg and we rejected H0 so the true effect
is 6mmHg.

· The proportion of patients having adverse events was 0.01 and 0.03; the
study wasn’t powered to detect adverse event differences so we present no
statistical analysis

· The reduction in blood pressure was 6mmHg with 0.95 C.L. of [1mmHg,
11mmHg]; the drug is just as likely to only reduce blood pressure by 1mmHg
as it is by 6mmHg.

· The serum pH for the 15 dogs was 7.3± 0.1 (mean ± SE)
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3.8.4 How to Present Results
A15-24

· Estimates should be accompanied by confidence limits

· Confidence limits can be computed without regard to sample size or power

· A computed value from a sample is only an estimate of the population value,
whether or not you reject H0

· Best to think of an estimate from a study as a fuzz, not a point

· To present variability of subjects, use SD or IQR, not SE (SE is the precision
of the mean of subjects)

3.9 Comprehensive Example: Two sample t-test

3.9.1 Study Description

· Compare the effects of two soporific drugs

– Optical isomers of hyoscyamine hydrobromide

· Each subject receives a placebo and then is randomly assigned to receive
Drug 1 or Drug 2

· Dependent variable: Number of hours of increased sleep over control

· Drug 1 given to n1 subjects, Drug 2 given to n2 different subjects

· Study question: Is Drug 1 or Drug 2 more effective at increasing sleep?

– H0 : µ1 = µ2
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– H1 : µ1 6= µ2

3.9.2 Power and Sample Size

· Pilot study or previous published research shows σ = 1.9 hours

· Determine the number of subjects needed (in each group) for several value
of effect size ∆ (∆ = |µ1 − µ2|) in order to have 90% power with α = 0.05

∆ 1.0 1.5 2.0 2.5 3.0
n 77 35 20 14 10

· If Drug 1 (or 2) increases sleep by 3.0 hours more than Drug 2 (or 1), by
enrolling 10 subjects in each group we will have 90% power to detect an
association

3.9.3 Collected Data

Obs. Drug 1 Drug 2
1 0.7 1.9
2 −1.6 0.8
3 −0.2 1.1
4 −1.2 0.1
5 −0.1 −0.1
6 3.4 4.4
7 3.7 5.5
8 0.8 1.6
9 0.0 4.6
10 2.0 3.4

Mean 0.75 2.33
SD 1.79 2.0
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3.9.4 Statistical Test

· Stat program output

Two Sample t-test

data: extra by group

t = -1.8608, df = 18, p-value = 0.07919

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-3.3638740 0.2038740

sample estimates:

mean in group 1 mean in group 2

0.75 2.33

· Interpretation

– Compare Drug 2 to Drug 1. The output compares 1 to 2

– Individuals who take Drug 2 sleep on average 1.58 hours longer (95%
CI: [-0.20, 3.36]) than individuals who take Drug 1
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3.10 Comprehensive Example: Paired t-test

3.10.1 Study Description

· Compare the effects of two soporific drugs.

· Each subject receives placebo, Drug 1, and Drug 2

· Dependent variable: Number of hours of increased sleep

· Drug 1 given to n subjects, Drug 2 given to same n subjects

· Study question: Is Drug 1 or Drug 2 more effective at increasing sleep?

– H0 : µd = 0 where µd = µ1 − µ2

– H1 : µd 6= 0

3.10.2 Power and Sample Size

· Pilot study or previous published research shows the standard deviation of
the difference (σd) is 1.2 hours

· Determine the number of subjects needed for several value of effect size ∆
(∆ = |µ1 − µ2|)with 90% power, α = 0.05

∆ 0.5 1 1.5 2
n 62 16 8 5

· If Drug 1 (or 2) increases sleep by 1.5 hours more than Drug 2 (or 1), by
enrolling 8 subjects we will have 90% power to detect an association.
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· More powerful than the two sample test (need 10 subjects in each group for
∆ = 3.0 hours)

3.10.3 Collected Data

Subject Drug 1 Drug 2 Diff (2-1)
1 0.7 1.9 1.2
2 −1.6 0.8 2.4
3 −0.2 1.1 1.3
4 −1.2 0.1 1.3
5 −0.1 −0.1 0.0
6 3.4 4.4 1.0
7 3.7 5.5 1.8
8 0.8 1.6 0.8
9 0.0 4.6 4.6
10 2.0 3.4 1.4

Mean 0.75 2.33 1.58
SD 1.79 2.0 1.2
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3.10.4 Statistical Test

· Stat program output

Paired t-test

data: extra by group

t = -4.0621, df = 9, p-value = 0.002833

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-2.4598858 -0.7001142

sample estimates:

mean of the differences

-1.58

· Interpretation

– A person who takes Drug 2 sleeps on average 1.58 hours longer (95%
CI: [0.70, 2.50]) than a person who takes Drug 1

· Note: Same point estimate (1.58 hours), but more precise estimate (tighter
CI) than the 2-sample t-test



Chapter 4

Comparing Two Proportions

K5.2

4.1 Overview

· Compare dichotomous independent variable with a dichotomous outcome

– Independent variables: Exposed/Not, Treatment/Control, Knockout/Wild
Type, etc.

– Outcome (dependent) variables: Diseased/Not or any Yes/No outcome

· Continuous outcomes often dichotomized for analysis (bad idea)

– Consider t-tests (Chapter 3) or Non-parameteric methods (Chaper 5)

4.2 Normal-Theory Test

· Two independent samples
Sample 1 Sample 2

Sample size n1 n2

Population probability of event p1 p2

Sample probability of event p̂1 p̂2

65
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· Null Hypothesis, H0 : p1 = p2 = p

· Estimating the variance

– Variance of p̂i = pi(1− pi)/ni for i = 1, 2

– Variance of (p̂1 − p̂2) is the sum of the variances, which under H0 is

p(1− p)[
1

n1
+

1

n2
]

– We estimate this variance by plugging p̂ into p, where

p̂ =
n1p̂1 + n2p̂2

n1 + n2

is the pooled estimate of the probability under H0 : p1 = p2 = p

· Test statistic which has approximately a normal distribution under H0 if nip̂i

are each large enough:

z =
p̂1 − p̂2√

p̂(1− p̂)[ 1
n1

+ 1
n2

]

· To test H0 we see how likely it is to obtain a z value as far or farther out in
the tails of the normal distribution than z is

· We don’t recommend using the continuity correction

· Example:
Test whether the population of women whose age at first birth ≤ 29 has
the same probability of breast cancer as women whose age at first birth
was ≥ 30. This dichotomization is highly arbitrary and we should really be
testing for an association between age and cancer incidence, treating age
as a continuous variable.
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· Case-control study (independent and dependent variables interchanged);
p1 = probability of age at first birth ≥ 30, etc.

with Cancer without Cancer
Total # of subjects 3220(n1) 10245(n2)
# age ≥ 30 683 1498

Sample probabilities 0.212(p̂1) 0.146(p̂2)

Pooled probability 683+1498
3220+10245 = 0.162

· Estimate the variance

– variance(p̂1 − p̂2) = p̂(1− p̂)×
[

1
n1

+ 1
n2

]
= 5.54× 10−5

– SE =
√

variance = 0.00744

· Test statistic

– z = 0.212−0.146
0.00744 = 8.85

· 2-tailed P -value is 0.0 using survstat; we report P < 0.0001

· We do not use a t-distribution because there is no σ to estimate (and hence
no “denominator d.f.” to subtract)

4.3 χ2 Test

· If z has a normal distribution, z2 has a χ2 distribution with 1 d.f. (are testing
a single difference against zero)

· The data we just tested can be shown as a 2× 2 contingency table
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Cancer + Cancer -
Age ≤ 29 2537 8747 11284

Age ≥ 30 683 1498 2181
3220 10245 13465

· In general, the χ2 test statistic is given by

∑

ij

(Obsij − Expij)
2

Expij

· Obsij is the observed cell frequency for row i column j

· Expij is the expected cell frequency for row i column j

– Expected cell frequencies calculating assuming H0 is true

– Expij = row i total×column j total
grand total

– e.g. Exp11 = 11284×3220
13465

= 2698.4

· For 2 × 2 tables, if the observed cell frequencies are labeled
a b

c d
the χ2

test statistic simplifies to

N [ad− bc]2

(a + c)(b + d)(a + b)(c + d)
,

where N = a + b + c + d. Here we get χ2
1 = 78.37

· 78.37 is z2 from above!

· Don’t need Yates’ continuity correction Eq. 10.5

· Can get P -value from χ2 distribution calculator (surfstat)
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· Note that even though we are doing a 2-tailed test we use only the right tail
of the χ2

1 distribution; that’s because we have squared the difference when
computing the statistic, so the sign is lost.

· This is the ordinary Pearson χ2 test

4.4 Fisher’s Exact Test

· Is a misnomer in the sense that it computes probabilities exactly, with no nor-
mal approximation, but only after changing what is being tested to condition
on the number of events and non-events

· As a result it is conservative

· The ordinary Pearson χ2 works fine (even in most cases where an expected
cell frequency < 5, contrary to popular belief)

· We don’t use Yates’ continuity correction because it was developed to make
the normal approximation test yield P -values that are more similar to Fisher’s
test, i.e., to be more conservative

4.5 Sample Size and Power for Comparing Two Independent Samp les

· Power ↑ as

– n1, n2 ↑

– n2

n1

→ 1.0 (usually)

– ∆ = |p1 − p2| ↑
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– α ↑

· There are approximate formulas such as the recommended methods in Alt-
man based on transforming p̂ to make it have a variance that is almost inde-
pendent of p A45-50

· Example:

Using current therapy, 50% of the population is free of infection at 24 hours.
Adding a new drug to the standard of care is expected to increase the per-
centage infection-free to 70%. If we randomly sample 100 subjects to re-
ceive standard care and 100 subjects to receive the new therapy, what is the
probabilty that we will be able to detect a signficant different between the two
therapies at the end of the study?

p1 = .5, p2 = .7, n1 = n2 = 100

results in a power of 0.83 when α = 0.05

· When computing sample size to achieve a given power, the sample size ↓
when

– power ↓

– n2

n1

→ 1.0

– ∆ ↑

– α ↑

· Required sample size is a function of both p1 and p2

· Example:
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How many subjects are needed to detect a 0.8 fold decrease in the proba-
bility of colorectal cancer if the baseline probability of cancer is 0.15%? Use
a power of 0.8 and a type-I error rate of 0.05.

p1 = 0.0015, p2 = 0.8× p1 = 0.0012, α = 0.05, β = 0.2

n1 = n2 = 234, 945

according to powercalc (Rosner estimated 234,881)

4.6 Confidence Interval

An approximate 1− α 2-sided CL is given by

p̂1 − p̂2 ± z1−α/2 ×
√√√√ p̂1(1− p̂1)

n1
+

p̂2(1− p̂2)

n2

where z1−α/2 is the critical value from the normal distribution (1.96 when α =

0.05).

The CL for the number of patients needed to be treated to save one event may
simply be obtained by taking the reciprocal of the two confidence limits.a

4.7 Sample Size for a Given Precision

In the case n1 = n2 = n, α = 0.05, the confidence interval has maximum width
with p1 and p2 are near 0.5. As a worse case the margin of error is then 1.96/

√
2n.

The n required to achieve a margin of error of δ at the 0.95 confidence level is
1.92/δ2. For example, to approximate the difference in the incidence probability
of stroke between males and females to at worst ±0.05 at the 0.95 level would
require 768 patients in each group.

aIf a negative risk reduction is included in the confidence interval, set the NNT to∞ for that limit instead of quoting a negative NNT.
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4.8 Relative Effect Measures

· We have been dealing with risk differences which are measures of absolute
effect

· Measures of relative effect include risk ratios and odds ratios

· Risk ratios are easier to interpret but only are useful over a limited range
of prognosis (i.e., a risk factor that doubles your risk of lung cancer cannot
apply to a subject having a risk above 0.5 without the risk factor)

· Odds ratios can apply to any subject

· In large clinical trials treatment effects on lowering probability of an event are
often constant on the odds ratio scale

· OR = Odds ratio =
p1

1−p1
p2

1−p2

· Testing H0: OR=1 is equivalent to testing H0 : p1 = p2

· There are formulas for computing confidence intervals for odds ratios

· Odds ratios are most variable when one or both of the probabilities are near
0 or 1

· We compute CLs for ORs by anti-logging CLs for the log OR

· In the case where p1 = p2 = 0.05 and n1 = n2 = n, the standard error of the
log odds ratio is approximately

√
42.1
n

· The common sample size n needed to estimate the true OR to within a factor
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of 1.5 is 984 with ps in this range

4.9 Comprehensive example

4.9.1 Study Description

· Consider patients who will undergo coronary artery bypass graft surgery
(CABG)

· Mortality risk associated with open heart surgery

· Study question: Do emergency cases have a surgical mortality that is differ-
ent from that of non-emergency cases?

· Population probabilities

– p1: Probability of death in patients with emergency priority

– p2: Probability of death in patients with non-emergency priority

· Statistical hypotheses

– H0 : p1 = p2 (or OR = 1)

– H1 : p1 6= p2 (or OR 6= 1)

4.9.2 Power and Sample Size

· Prior research shows that just over 10% of surgeries end in death

· Researchers want to be able to detect a 3 fold increase in risk
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· For every 1 emergency priority, expect to see 10 non-emergency

· p1 = 0.3, p2 = 0.1, α = 0.05, and power = 0.90

· Calculate sample sizes using the PS software for these values and other
combinations of p1 and p2

(p1, p2) (0.3, 0.1) (0.4, 0.2) (0.03, 0.01) (0.7, 0.9)
n1 40 56 589 40
n2 400 560 5890 400

4.9.3 Collected Data

In-hospital mortality figures for emergency surgery and other surgery

Discharge Status
Surgical Priority Dead Alive
Emergency 6 19
Other 11 100

· p̂1 = 6
25

= 0.24

· p̂2 = 11
111 = 0.10

4.9.4 Statistical Test

· Stat program output

Discharge Status

Priority Dead Alive oddsratio lower upper p.value

Emergency 6 19 1.000000 NA NA NA

Other 11 100 2.870813 0.946971 8.703085 0.05429

$measure
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[1] "wald"

$conf.level

[1] 0.95

$pvalue

[1] "chi2"

· Interpretation

– Compare odds of death in the emergency group
(

p̂1

1−p̂1

)
to odds of death

in non-emergency group
(

p̂2

1−p̂2

)

– Emergency cases have 2.87 (95% CI: [0.95, 3.36]) fold increased odds
times of death during surgery compared to non-emergency cases.

Fisher’s Exact Test

Observed marginal totals from emergency surgery dataset
Dead Alive

Emergency a b 25
Other c d 111

17 119 136

· With fixed marginal totals, there are 18 possible tables (a = 0, 1, . . .17)

· Can calculated probability of each of these tables

– p-value: Probability of observing data as extreme or more extreme than
we collected in this experiment

· Exact test: p-value can be calculated “exactly” (not using the Chi-squared
distribution to approximate the p-value)
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· Stat program output

two-sided

Surgical Priority midp.exact fisher.exact chi.square

Emergency NA NA NA

Other 0.07930086 0.0870594 0.05429257

· Fisher’s test more conservative than Pearson’s Chi-square Test (larger p-
value)
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Nonparametric Statistical Tests

K5.4

5.1 When to use non-parametric methods

· Short answer: Good default when P -values are needed

· Nonparametric methods are those not requiring one to assume a certain
distribution for the raw data

– In contrast, parametric methods assume data come from some underly-
ing distribution

– t-tests assume the data come form a Normal distribution with parameters
µ and σ2 for the mean and variance, respectively

· Response variable ordinal or interval

· For ordinal responses nonparametric methods are preferred because they
assume no spacing between categories

· No problem in using nonparametric tests on interval data

77
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– if normality holds, nonpar. test 0.95 efficient, i.e., has about the same
power as the parametric test done on 0.95 of the observations

– if normality does not hold, nonpar. tests can be arbitrarily more efficient
and powerful than the corresponding parametric test

– an elegant and non-arbitrary way to deal with extreme values or outliers

– rank-based nonparametric tests give the analyst freedom from having to
choose the correct transformation of the measurement (as long as the
optimum transformation is monotonic)

· Example: Fecal calprotectin being evaluated as a possible biomarker of dis-
ease severity

– Calprotectin has an upper detection limit

– Median can be calculated (mean cannot)
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Figure 5.1: Fecal calprotectin by endoscopy severity rating
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· If all you want is a P -value nonpar. tests are preferred

· A drawback is that nonpar. tests do not correspond to usual confidence limits
for effects

– E.g., a CL for the difference in 2 means may include zero whereas the
Wilcoxon test yields P = 0.01

– Point estimate that exactly corresponds to the Wilcoxon two-sample test
is the Hodges-Lehman estimate of the location difference

∗ median of all possible differences between a measurement from group
1 and a measurement from group 2

· Nonparametric tests are often obtained by replacing the data with ranks
across subjects and then doing the parametric test

· Many nonpar. tests give the same P -value regardless of how the data are
transformed; a careful choice of transformation (e.g., log) must sometimes
be used in the context of parametric tests

· P -values computed using e.g. the t distribution are quite accurate for non-
parametric tests

· In case of ties, midranks are used, e.g., if the raw data were 105 120 120
121 the ranks would be 1 2.5 2.5 4

Parametric Test Nonparametric Counterpart
1-sample t Wilcoxon signed-rank
2-sample t Wilcoxon 2-sample rank-sum
k-sample ANOVA Kruskal-Wallis
Pearson r Spearman ρ
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5.2 One Sample Test: Wilcoxon Signed-Rank
K5.10.E

· Almost always used on paired data where the column of values represents
differences (e.g., post-pre) or log ratios

· The sign test is the simplest test for the median difference being zero in the
population

– it just counts the number of positive differences after tossing out zero
differences

– tests H0 :Prob[x > 0] = 1
2, i.e., that it is equally likely in the population to

have a value below zero as it is to have a value above zero

– this is the same as testing that the population median difference is zero

– as it ignores magnitudes completely, the test is inefficient

· In the Wilcoxon signed rank one-sample test, ranks of absolute differences
are given the sign of the original difference

· Magnitudes of raw data matter more here than with the Wilcoxon 2-sample
test

· Observations with zero differences are ignored

· Example: A crossover study in which the treatment order is randomized
Data arranged so that treatment A is in the first column, no matter which
order treatment A was given
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A B B-A Rank |B−A| Signed Rank
5 6 1 1.5 1.5
6 5 -1 1.5 -1.5
4 9 5 4.0 4.0
7 9 2 3.0 3.0

· A good approximation to an exact P -value may be obtained by computing

z =

∑
SRi√∑
SR2

i

,

where the signed rank for observation i is SRi. This formula already takes
ties into account without using Rosner’s messy Eq. 9.5. We look up |z|
against the normal distribution. Here z = 7√

29.5
= 1.29 and by surfstat

the 2-tailed P -value is 0.197

· If all differences are positive or all are negative, the exact 2-tailed P -value is
1

2n−1

– implies that n must exceed 5 for any possibility of significance at the
α = 0.05 level for a 2-tailed test

5.2.1 One sample/Paired Test Example

· Sleep Dataset

– Compare the effects of two soporific drugs.

– Each subject receives placebo, Drug 1, and Drug 2

– Study question: Is Drug 1 or Drug 2 more effective at increasing sleep?

– Dependent variable: Difference in hours of sleep comparing Drug 2 to
Drug 1
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– H0 : For any given subject, the difference in hours of sleep is equally
likely to be positive or negative
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Subject Drug 1 Drug 2 Diff (2-1) Sign Rank
1 1.9 0.7 −1.2 - 3
2 −1.6 0.8 2.4 + 8
3 −0.2 1.1 1.3 + 4.5
4 −1.2 0.1 1.3 + 4.5
5 −0.1 −0.1 0.0 NA NA
6 3.4 4.4 1.0 + 2
7 3.7 5.5 1.8 + 7
8 0.8 1.6 0.8 + 1
9 0.0 4.6 4.6 + 9
10 2.0 3.4 1.4 + 6

Table 5.1: Hours of extra sleep on drugs 1 and 2, differences, signs and ranks of sleep study data

· Wilcoxon signed rank test statistical program output

Wilcoxon signed rank test

data: sleep.data

V = 42, p-value = 0.02077

alternative hypothesis: true location is not equal to 0

– Interpretation: Reject H0, Drug 2 increases sleep by more hours than
Drug 1 (p = 0.02)

· Could also perform sign test on sleep data

– If drugs are equally effective, should have same number of ‘+’ and ’-’

– Observed data: 1 ‘-’, 8 ‘+’, throw out 1 ‘no change’

– Sign test (2-sided) P -value: Probability of observing 0 or 1 ‘-’ OR 0 or 1
‘+’

– p = 0.04, so reject H0 at α = 0.05

· The signed rank test assumes that the distribution of differences is symmet-
ric
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· When the distribution is symmetric, the signed rank test tests whether the
median difference is zero

· In general it tests that, for two randomly chosen observations i and j with
values (differences) xi and xj, that the probability that xi + xj > 0 is 1

2

· The estimator that corresponds exactly to the test in all situations is the pseu-
domedian, the median of all possible pairwise averages of xi and xj, so one
could say that the signed rank test tests H0: pseudomedian=0

· The value SR
n+1
− 1

2
estimates the probability that two randomly chosen obser-

vations have a positive sum, where SR is the mean of the column of signed
ranks

· To test H0 : η = η0, where η is the population median (not a difference) and
η0 is some constant, we create the n values xi − η0 and feed those to the
signed rank test, assuming the distribution is symmetric

· When all nonzero values are of the same sign, the test reduces to the sign
test and the 2-tailed P -value is (1

2)
n−1 where n is the number of nonzero

values

5.3 Two Sample Test: Wilcoxon–Mann–Whitney
K5.5.B

· The Wilcoxon–Mann–Whitney (WMW) 2-sample rank sum test is for testing
for equality of central tendency of two distributions (for unpaired data)

· Ranking is done by combining the two samples and ignoring which sample
each observation came from

· Example:
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Females 120 118 121 119
Males 124 120 133
Ranks for Females 3.5 1 5 2
Ranks for Males 6 3.5 7

· Doing a 2-sample t-test using these ranks as if they were raw data and
computing the P -value against 4+3-2=5 d.f. will work quite well

· Some statistical packages compute P -values exactly (especially if there are
no ties)

· Loosely speaking the WMW test tests whether the population medians of the
two groups are the same

· More accurately and more generally, it tests whether observations in one
population tend to be larger than observations in the other

· Letting x1 and x2 respectively be randomly chosen observations from popu-
lations one and two, WMW tests H0 : C = 1

2, where C =Prob[x1 > x2]

· The C index (concordance probability ) may be estimated by computing

C =
R̄− n1+1

2

n2
,

where R̄ is the mean of the ranks in group 1;
For the above data R̄ = 2.875 and C = 2.875−2.5

3 = 0.125, so we estimate that
the probability is 0.125 that a randomly chosen female has a value greater
than a randomly chosen male.

· In diagnostic studies where x is the continuous result of a medical test and
the grouping variable is diseased vs. nondiseased, C is the area under the
receiver operating characteristic (ROC) curve
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· Test still has the “probability of ordering” interpretation when the variances
of the two samples are markedly different, but it no longer tests anything like
the difference in population medians

5.3.1 Two sample WMW example

· Fecal calprotectin being evaluated as a possible biomarker of disease sever-
ity

· Calprotectin measured in 26 subjects, 8 observed to have no/mild activity by
endoscopy

· Calprotectin has upper detection limit at 2500 units

– A type of missing data, but need to keep in analysis

· Study question: Are calprotectin levels different in subjects with no or mild
activity compared to subjects with moderate or severe activity?

· Statement of the null hypothesis

– H0 : Populations with no/mild activity have the same distribution of cal-
protectin as populations with moderate/severe activity

– H0 : C = 1
2

· Stat program output

Wilcoxon rank sum test

data: calpro by endo2

W = 23.5, p-value = 0.006257

alternative hypothesis: true location shift is not equal to 0
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Figure 5.2: Fecal calprotectin by endoscopy severity rating. Numbers indicate ranks of calprotectin
levels, ignoring group

· Test statistic W equals the sum of the ranks in the no/mild group minus
n1 ∗ (n1 + 1)/2, where n1 is the number of subjects in then no/mild sample

· W = 59.5− 8∗9
2 = 23.5

· A common (but loose) interpretation: People with moderate/severe activity
have higher median fecal calprotectin levels than people with no/mild activity
(p = 0.006).

5.4 Confidence Intervals
A36-43

· Confidence intervals for the median (one sample)

– Table 18.4 (Altman) gives the ranks of the observations to be used to give
approximate confidence intervals for the median
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– e.g., if n = 12, the 3rd and 10th largest values give a 96.1% confidence
interval

– For larger sample sizes, the lower ranked value (r) and upper ranked
value (s) to select for an approximate 95% confidence interval for the
population median is

r =
n

2
− 1.96 ∗

√
n

2
and s = 1 +

n

2
+ 1.96 ∗

√
n

2

– e.g., if n = 100 then r = 40.2 and s = 60.8, so we would pick the 40th and
61st largest values from the sample to specify a 95% confidence interval
for the population median

· Confidence intervals for the difference in two medians (two samples)

– Assume data come from distributions with same shape and differ only in
location

– Considers all possibly differences between sample 1 and sample 2

Female
Male 120 118 121 119
124 4 6 3 5
120 0 2 -1 1
133 13 15 12 14

– An estimate of the median difference (males - females) is the median
of these 12 differences, with the 3rd and 10th largest values giving an
(approximate) 95% CI

– Median estimate = 4.5, 95% CI = [1, 13]

– Specific formulas found in Altman, pages 40-41
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· Bootstrap A159-163

– General method, not just for medians

– Non-parametric, does not assume symmetry

– Iterative method that repeatedly samples from the original data

– Algorithm for creating a 95% CI for the difference in two medians

1. Sample with replacement from sample 1 and sample 2
2. Calculate the difference in medians, save result
3. Repeat Steps 1 and 2 1000 times

– A (naive) 95% CI is given by the 25th and 975th largest values of your
1000 median differences

– For the male/female data, median estimate = 4.5, 95% CI = [-0.5, 14.5],
which agrees with the conclusion from a WMW rank sum test (p = 0.11).

5.5 Strategy

· Don’t assess normality of data

· Use nonparametric test in any case, to get P -values

· Use nonparametric confidence intervals for means and mediansa which will
be more in conformance to what the nonpar. test is testing

aA good nonparametric confidence for a population mean that does not even assume a symmetric distribution can be obtained from the
bootstrap simulation procedure.
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Correlation

6.1 Overview

Outcome Predictor Normality? Analysis Method
Interval Binary Yes T-tests or linear regression
Interval Binary No Wilcoxon 1- and 2-sample tests
Categorical Categorical NA Pearson’s Chi-square test
Interval Interval Yes Correlation or linear regression
Interval Interval No Spearman’s rank correlation

· Examine association between continuous/interval outcome (y) and conti-
nous/interval predictor (x)

· Scatterplot of y versus x

6.2 Pearson’s correlation coefficient
K:5.7.A

· r = Σ(xi−x̄)(yi−ȳ)√
Σ(xi−x̄)2Σ(yi−ȳ)2

90
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· Range: −1 ≤ r ≤ 1

· Correlation coefficient is a unitless index of strength of association between
two variables (+ = positive association, - = negative, 0 = no association)

· Measures the linear relationship between X and Y

· Can test for significant association by testing whether the population corre-
lation is zero

t =
r
√

n− 2√
1− r2

which is identical to the t-test used to test whether the population r is zero;
d.f.=n− 2.

· Use probability calculator for t distribution to get P -value (2-tailed if inter-
ested in association in either direction)

· 1-tailed test for a positive correlation between X and Y tests H0 : when X ↑
does Y ↑ in the population?

· Confidence intervals for population r calculated using Fisher’s Z transforma-
tion A:89-91

Z =
1

2
loge

(
1 + r

1− r

)

– For large n, Z follows a Normal distribution with standard error 1√
n−3

– To calculate a confidence interval for r, first find the confidence interval
for Z then transform back to the r scale

Z =
1

2
loge

(
1 + r

1− r

)

2 ∗ Z = loge

(
1 + r

1− r

)
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exp(2 ∗ Z) =

(
1 + r

1− r

)

exp(2 ∗ Z) ∗ (1− r) = 1 + r

exp(2 ∗ Z)− r ∗ exp(2 ∗ Z) = 1 + r

exp(2 ∗ Z)− 1 = r ∗ exp(2 ∗ Z) + r

exp(2 ∗ Z)− 1 = r (exp(2 ∗ Z) + 1)

exp(2 ∗ Z)− 1

exp(2 ∗ Z) + 1
= r

· Example (Altman 89-90): Pearson’s r for a study investigating the associa-
tion of basal metabolic rate with total energy expenditure was calculated to
be 0.7283 in a study of 13 women. Derive a 95% confidence interval for r.

Z =
1

2
loge

(
1 + 0.7283

1− 0.7283

)
= 0.9251

The lower limit of a 95% CI for Z is given by

0.9251− 1.96 ∗ 1

13− 3
= 0.3053

and the upper limit is

0.9251 + 1.96 ∗ 1

13− 3
= 1.545

A 95% CI for the population correlation coefficient is given by transforming
these limits from the Z scale back to the r scale

exp(2 ∗ 0.3053)− 1

exp(2 ∗ 0.3053) + 1
to

exp(2 ∗ 1.545)− 1

exp(2 ∗ 1.545) + 1

Which gives a 95% CI from 0.30 to 0.91 for the population correlation

6.3 Spearman’s Rank Correlation
K:5.7.B

· Pearson’s r assumes linear relationship between X and Y
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· Spearman’s ρ (sometimes labeled rs) assumes monotonic relationship be-
tween X and Y

– when X ↑, Y always ↑ or stays flat, or Y always ↓ or stays flat

– does not assume linearity

· ρ = r once replace column of Xs by their ranks and column of Y s by ranks

· To test H0 : ρ = 0 without assuming linearity or normality, being damaged by
outliers, or sacrificing much power (even if data are normal), use a t statistic:

t =
ρ
√

n− 2√
1− ρ2

which is identical to the t-test used to test whether the population r is zero;
d.f.=n− 2.

· Use probability calculator for t distribution to get P -value (2-tailed if inter-
ested in association in either direction)

· 1-tailed test for a positive correlation between X and Y tests H0 : when X ↑
does Y ↑ in the population?

6.4 Correlation Examples

· Correlation difficult to judge by eye

· Example plots on following pages
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Figure 6.1: X and Y are drawn from bivariate Normal populations with correlations ranging from 0.0
to 0.9. Pearson and Spearman sample correlations are shown for samples of size 50.
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Figure 6.2: Different observed datasets that have the same correlation. All six plots have a sample
Pearson’s correlation of 0.7.
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6.5 Correlation and Agreement

· Compare two methods of measuring the same underlying value

– Lung function measured using a spirometer (expensive, accurate) or
peak flow meter (cheap, less accurate)

– Two devices (Restech and Sandhill) used to mesured acidity (pH) in the
esophagus

· Typical (incorrect) approach begins with scatterplot of Restech versus Sand-
hill with a 1:1 line indicating perfect agreement

2 3 4 5 6 7 8
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7
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Restech pH

S
an
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ill

 p
H

Figure 6.3: Scatter plot of Restech and Sandhill pH readings. A 1:1 line is included to indicate
“perfect” agreement between the two devices.

· Incorrect approach would report a high correlation (r = 0.90) and conclude
good agreement
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· Problems with the correlation approach

1. r measures the degree of linear association between two variables, not
the agreement. If,for example, the Sandhill consistently gave pH values
that were 0.5 unit higher than the Restech, we could still have high corre-
lation, but poor agreement between the two devices. We can have high
correlation if the two devices lie closely to any line, not just a 1:1 line that
indicates perfect agreement.

2. A change in scale does not affect correlation, but does influence agree-
ment. For example, if the Sandhill always registered 2 times larger than
the Restech, we would have perfect correlation but the agreement would
get progressively worse for larger values of pH.

3. Correlation depends on the range of the data so that larger ranges lead
to larger correlations. This can lead to vary strange interpretations

r ρ
all data 0.90 0.73
avg pH ≤ 4 0.51 0.58
avg pH > 4 0.74 0.65

Table 6.1: Pearson (r) and Spearman (ρ) correlations for Restech and Sandhill pH data. The correlation calculated using all of
the data is larger than the correlation calculated using a retricted range of the data. However, it would be difficult to claim that
the overall agreement is better than both the agreement when pH is less than 4 and when pH is greater than 4.

4. Tests of significance (testing if r = 0) are irrelevant to the question at
hand, but often reported to demonstrate a significant association. The
two devices are measuring the same quantity, so it would be shocking
if we did not observe a highly significant p-value. A p < .0001 is not
impressive. A regression analysis with a highly significant slope would
be similarly unimpressive.

5. Data can have high correlation, but poor agreement. There are many
examples in the literature, but even in our analysis with r = 0.90, the
correlation is high, but we will show that the agreement is not as good as
the high correlation implies.

6.5.1 Bland-Altman Plots
EMS:36.4

· See Bland and Altman (1986, Lancet)
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· Create plots of the difference in measurements on the y-axis versus the
average value of the two devices on the x-axis

· If the two devices agree, the difference should be about zero

· The average of the two devices is our best estimate of the true, unknown
(pH) value that is we are trying to measure

· Measurements will often vary in a systematic way over the range of mea-
surement. By plotting the difference versus the average, we can visually
determine if the difference changes over our estimate of the truth.

· Solid line indicated the mean, dashed lines are approximate 95% confidence
intervals (assuming Normality)
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Figure 6.4: Bland-Altman plot for the Restech and Sandhill pH data. The difference in pH mesaure-
ments (Restech - Sandhill) is presented on the y-axis and the average of the two devices on the
x-axis. We see poor agreement around pH values of 4-5
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· In our example, we will also consider differences in the two measurements
over the time of day

· The added smooth curve is called a locally weighted scatterplot smooth
(lowess)

Comparison of Restech and Sandhill pH by time of day
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Figure 6.5: Differene in pH measurements (Restech - Sandhill) by time of day. Is the difference
modified by a subject being in a supine position rather than being upright?

6.5.2 Using r to Compute Sample Size

· Without knowledge of population variances, etc., r can be useful for planning
studies

· Choose n so that margin for error (half-width of C.L.) for r is acceptable

· Precision of r in estimating ρ is generally worst when ρ = 0
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· This margin for error is shown in the figure below
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Figure 6.6: Margin for error (length of longer side of asymmetric 0.95 confidence interval) for r in
estimating ρ, when ρ = 0 (solid line) and ρ = 0.5 (dotted line). Calculations are based on Fisher’s
z transformation of r.

6.5.3 Comparing Two r’s

· Rarely appropriate

· Two r’s can be the same even though slopes may differ

· Usually better to compare effects on a real scale (slopes)
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Simple and Multiple Regression Models

7.1 Purposes of Statistical Models

· Hypothesis testing

– Test for no association (correlation) of a predictor (independent variable)
and a response or dependent variable (unadjusted test) or test for no
association of predictor and response after adjusting for the effects of
other predictors

· Estimation

– Estimate the shape and magnitude of the relationship between a single
predictor (independent) variable and a response (dependent) variable

– Estimate the effect on the response variable of changing a predictor from
one value to another

· Prediction

– Predicting response tendencies, e.g., long-term average response as a
function of predictors

101
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– Predicting responses of individual subjects

7.2 Advantages of Modeling

Even when only testing H0 a model based approach has advantages:

· Permutation and rank tests not as useful for estimation

· Cannot readily be extended to cluster sampling or repeated measurements

· Models generalize tests

– 2-sample t-test, ANOVA→
multiple linear regression

– Wilcoxon, Kruskal-Wallis, Spearman→
proportional odds ordinal logistic model

– log-rank→ Cox

· Models not only allow for multiplicity adjustment but for shrinkage of esti-
mates

– Statisticians comfortable with P -value adjustment but fail to recognize
that the difference between the most different treatments is badly biased

Statistical estimation is usually model-based

· Relative effect of increasing cholesterol from 200 to 250 mg/dl on hazard of
death, holding other risk factors constant

· Adjustment depends on how other risk factors relate to outcome
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· Usually interested in adjusted (partial) effects, not unadjusted (marginal or
crude) effects

7.3 Nonparametric Regression

· Estimate tendency (mean or median) of Y as a function of X

· Few assumptions

· Especially handy when there is a single X

· Plotted trend line may be the final result of the analysis

· Simplest smoother: moving average

X: 1 2 3 5 8
Y : 2.1 3.8 5.7 11.1 17.2

Ê(Y |X = 2) =
2.1 + 3.8 + 5.7

3

Ê(Y |X =
2 + 3 + 5

3
) =

3.8 + 5.7 + 11.1

3

– overlap OK

– problem in estimating E(Y ) at outer X-values

– estimates very sensitive to bin width

· Moving linear regression far superior to moving avg. (moving flat line)
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· Cleveland’s moving linear regression smoother loess (locally weighted least
squares) is the most popular smoother
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Figure 7.1: loess nonparametric smoother relating CSF:blood glucose ratio to total CSF polymorph
count in patients with either bacterial or viral meningitis. Rug plot on axes plots indicate raw data
values.
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Figure 7.2: “Super smoother” relating age to the probability of bacterial meningitis given a patient
has bacterial or viral meningitis, with a rug plot showing the age distribution.
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7.4 Simple Linear Regression
11.1-6

7.4.1 Notation

· y : random variable representing response variable

· x : random variable representing independent variable (subject descriptor,
predictor, covariable

– conditioned upon

– treating as constants, measured without error

· What does conditioning mean?

– holding constant

– subsetting on

– slicing scatterplot vertically

· E(y|x) : population expected value or long-run average of y conditioned on
the value of x
Example: population average blood pressure for a 30-year old

· α : y-intercept

· β : slope of y on x (∆y
∆x)

Simple linear regression is used when

· Only two variables are of interest
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x

y

Figure 7.3: Data from a sample of n = 100 points along with population linear regression line. The
x variable is discrete. The conditional distribution of y|x can be thought of as a vertical slice at x.
The unconditional distribution of y is shown on the y-axis.
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· One variable is a response and one a predictor

· No adjustment is needed for confounding or other between-subject variation

· The investigator is interested in assessing the strength of the relationship
between x and y in real data units, or in predicting y from x

· A linear relationship is assumed (why assume this? why not use nonpara-
metric regression?)

· Not when one only needs to test for association (use Spearman’s ρ rank
correlation) or estimate a correlation index

7.4.2 Two Ways of Stating the Model

· E(y|x) = α + βx

· y = α + βx + e
e is a random error (residual) representing variation between subjects in y
even if x is constant, e.g. variation in blood pressure for patients of the same
age

7.4.3 Assumptions, If Inference Needed

· Conditional on x, y is normal with mean α+βx and constant variance σ2, or:

· e is normal with mean 0 and constant variance σ2

· E(y|x) = E(α + βx + e) = α + βx + E(e),
E(e) = 0.
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· Observations are independent

7.4.4 How Can α and β be Estimated?

· Need a criterion for what are good estimates

· One criterion is to choose values of the two parameters that minimize the
sum of squared errors in predicting individual subject responses

· Let a, b be guesses for α, β

· Sample of size n : (x1, y1), (x2, y2), . . . , (xn, yn)

· SSE =
∑n

i=1(yi − a− bxi)
2

· Values that minimize SSE are least squares estimates

· These are obtained from

Lxx =
∑

(xi − x̄)2 Lxy =
∑

(xi − x̄)(yi − ȳ)

β̂ = b =
Lxy

Lxx
α̂ = a = ȳ − bx̄

· Note: A term from Lxy will be positive when x and y are concordant in terms
of both being above their means or both being below their means.

7.4.5 Inference about Parameters

· Residual: d = y − ŷ
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· d large if line was not the proper fit to the data or if there is large variability
across subjects for the same x

· Beware of that many authors combine both components when using the
terms goodness of fit and lack of fit

· Might be better to think of lack of fit as being due to a structural defect in the
model (e.g., nonlinearity)

· SST =
∑n

i=1(yi − ȳ)2

SSR =
∑

(ŷi − ȳ)2

SSE =
∑

(yi − ŷi)
2

SST = SSR + SSE

SSR = SST − SSE

· SS increases in proportion to n

· Mean squares: normalized for for d.f.: SS
d.f.(SS)

· MSR = SSR/p, p = no. of parameters besides intercept (here, 1)
MSE = SSE/(n− p− 1) (sample conditional variance of y)
MST = SST/(n− 1) (sample unconditional variance of y)

· Brief review of ordinary ANOVA (analysis of variance):

– Generalizes 2-sample t-test to > 2 groups

– SSR is SS between treatment means

– SSE is SS within treatments, summed over treatments

· ANOVA Table for Regression
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Source d.f. SS MS F

Regression p SSR MSR = SSR/p MSR/MSE

Error n− p− 1 SSE MSE = SSE/(n− p− 1)

Total n− 1 SST MST = SST/(n− 1)

· Statistical evidence for large values of β can be summarized by F = MSR
MSE

· Has F distribution with p and n− p− 1 d.f.

· Large values→ |β| large

7.4.6 Estimating σ, S.E. of β̂; t-test

· s2
y·x = σ̂2 = MSE = V̂ ar(y|x) = V̂ ar(e)

· ŝe(b) = sy·x/L
1

2

xx

· t = b/ŝe(b), n− p− 1 d.f.

· t2 ≡ F when p = 1

· tn−2 ≡
√

F1,n−2

· t identical to 2-sample t-test (x has two values)

· If x takes on only the values 0 and 1, b equals ȳ when x = 1 minus ȳ when
x = 0
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7.4.7 Interval Estimation
11.5

· 2-sided 1− α CI for β: b± tn−2,1−α/2ŝe(b)

· CI for predictions depend on what you want to predict even though ŷ esti-
mates both y a and E(y|x)

· Notation for these two goals: ŷ and Ê(y|x)

– Predicting y with ŷ :

ŝ.e.(ŷ) = sy·x
√

1 + 1
n + (x−x̄)2

Lxx

Note : This s.e.→ sy·x as n→∞.

– Predicting Ê(y|x) with ŷ:

ŝ.e.(Ê(y|x)) = sy·x
√

1
n + (x−x̄)2

Lxx
See footnoteb

Note : This s.e. shrinks to 0 as n→∞

· 1− α 2-sided CI for either one:
ŷ ± tn−p−1,1−α/2ŝ.e.

· Wide CI (large ŝ.e.) due to:

– small n

– large σ2

– being far from the data center (x̄)

· Example usages:
aWith a normal distribution, the least dangerous guess for an individual y is the estimated mean of y.
bn here is the grand total number of observations because we are borrowing information about neighboring x-points, i.e., using interpolation.

If we didn’t assume anything and just computed mean y at each separate x, the standard error would instead by estimated by sy·x

√
1
m

, where
m is the number of original observations with x exactly equal to the x for which we are obtaining the prediction. The latter s.e. is much larger
than the one from the linear model.
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– Is a child of age x smaller than predicted for her age?
Use s.e.(ŷ)

– What is the best estimate of the population mean blood pressure for pa-
tients on treatment A?
Use s.e.(Ê(y|x))

· Example pointwise 0.95 confidence bands:
x 1 3 5 6 7 9 11
y: 5 10 70 58 85 89 135

0 2 4 6 8 10 12

-50

0

50

100

150

x

y

Figure 7.4: Pointwise 0.95 confidence intervals for ŷ (wider bands) and Ê(y|x) (narrower bands).
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7.4.8 Assessing Goodness of Fit
11.6

Assumptions:

1. Linearity

2. σ2 is constant, independent of x

3. Observations (e’s) are independent of each other

4. For proper statistical inference (CI, P -values), y (e) is normal conditional on
x

Verifying some of the assumptions:

· In a scattergram the spread of y about the fitted line should be constant as
x increases, and y vs. x should appear linear

· Easier to see this with a plot of d̂ = y − ŷ vs. ŷ

· In this plot there are no systematic patterns (no trend in central tendency, no
change in spread of points with x)

· Trend in central tendency indicates failure of linearity

· qqnorm plot of d
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Figure 7.5: Using residuals to check some of the assumptions of the simple linear regression model.
Top left panel depicts non-constant σ2, which might call for transforming y. Top right panel shows
constant variance but the presence of a systemic trend which indicates failure of the linearity as-
sumption. Bottom left panel shows the ideal situation of white noise (no trend, constant variance).
Bottom right panel shows a q − q plot that demonstrates approximate normality of residuals, for
a sample of size n = 35. Horizontal reference lines are at zero, which is by definition the mean
of all residuals.
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7.5 Multivariable Modeling

7.5.1 Examples of Uses of Predictive Multivariable Modelin g

· Financial performance, consumer purchasing, loan pay-back

· Ecology

· Product life

· Employment discrimination

· Medicine, epidemiology, health services research

· Probability of diagnosis, time course of a disease

· Comparing non-randomized treatments

· Getting the correct estimate of relative effects in randomized studies requires
covariable adjustment if model is nonlinear

– Crude odds ratios biased towards 1.0 if sample heterogeneous

· Estimating absolute treatment effect (e.g., risk difference)

– Use e.g. difference in two predicted probabilities

· Cost-effectiveness ratios

– incremental cost / incremental ABSOLUTE benefit

– most studies use avg. cost difference / avg. benefit, which may apply to
no one
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7.5.2 Planning for Modeling

· Chance that predictive model will be used [7]

· Response definition, follow-up

· Variable definitions

· Observer variability

· Missing data

· Preference for continuous variables

· Subjects

· Sites

· See [5]

Iezzoni [2] lists these dimensions to capture, for patient outcome studies:

1. age

2. sex

3. acute clinical stability

4. principal diagnosis

5. severity of principal diagnosis

6. extent and severity of comorbidities

7. physical functional status
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8. psychological, cognitive, and psychosocial functioning

9. cultural, ethnic, and socioeconomic attributes and behaviors

10. health status and quality of life

11. patient attitudes and preferences for outcomes

7.5.3 Choice of the Model

· In biostatistics and epidemiology we usually choose model empirically

· Model must use data efficiently

· Should model overall structure (e.g., acute vs. chronic)

· Robust models are better

· Should have correct mathematical structure (e.g., constraints on probabili-
ties)

7.6 Multiple Linear Regression
EMS 11

7.6.1 The Model and How Parameters are Estimated

· p independent variables x1, x2, . . . , xp

· Examples: multiple risk factors, treatment plus patient descriptors when ad-
justing for non-randomized treatment selection in an observational study; a
set of controlled or uncontrolled factors in an experimental study; indicators
of multiple experimental manipulations performed simultaneously



CHAPTER 7. SIMPLE AND MULTIPLE REGRESSION MODELS 119

· Each variable has its own effect (slope) representing partial effects: effect of
increasing a variable by one unit, holding all others constant

· Initially assume that the different variables act in an additive fashion

· Assume the variables act linearly against y

· Model: y = α + β1x1 + β2x2 + . . . + βpxp + e

· Or: E(y|x) = α + β1x1 + β2x2 + . . . + βpxp

· For two x-variables: y = α + β1x1 + β2x2

· Estimated equation: ŷ = a + b1x1 + b2x2

· Least squares criterion for fitting the model (estimating the parameters):
SSE =

∑n
i=1[y − (a + b1x1 + b2x2)]

2

· Solve for a, b1, b2 to minimize SSE

· When p > 1, least squares estimates require complex formulas; still all of the
coefficient estimates are weighted combinations of the y’s,

∑
wiyi

c.

7.6.2 Interpretation of Parameters

· Regression coefficients are (b) are commonly called partial regression co-
efficients: effects of each variable holding all other variables in the model
constant

· Examples of partial effects:
cWhen p = 1, the wi for estimating β are xi−x̄∑

(xi−x̄)2
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– model containing x1=age (years) and x2=sex (0=male 1=female)
Coefficient of age (β1) is the change in the mean of y for males when age
increases by 1 year. It is also the change in y per unit increase in age
for females. β2 is the female minus male mean difference in y for two
subjects of the same age.

– E(y|x1, x2) = α+β1x1 for males, α+β1x1+β2 = (α+β2)+β1x1 for females
[the sex effect is a shift effect or change in y-intercept]

– model with age and systolic blood pressure measured when the study
begins
Coefficient of blood pressure is the change in mean y when blood pres-
sure increases by 1mmHg for subjects of the same age

· What is meant by changing a variable?

– We usually really mean a comparison of two subjects with different blood
pressures

– Or we can envision what would be the expected response had this sub-
ject’s blood pressure been 1mmHg greater at the outsetd

– We are not speaking of longitudinal changes in a single person’s blood
pressure

– We can use subtraction to get the adjusted (partial) effect of a variable,
e.g., E(y|x1, x2)− β2x2 = α + β1x1

· Example: ŷ = 37 + .01× weight + 0.5× cigarettes smoked per day

– .01 is the estimate of average increase y across subjects when weight is
increased by 1lb. if cigarette smoking is unchanged

dThis setup is the basis for randomized controlled trials and randomized animal experiments. Drug effects may be estimated with between-
patient group differences under a statistical model.
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– 0.5 is the estimate of the average increase in y across subjects per addi-
tional cigarette smoked per day if weight does not change

– 37 is the estimated mean of y for a subject of zero weight who does not
smoke

· Comparing regression coefficients:

– Can’t compare directly because of different units of measurement. Coef-
ficients in units of y

x .

– Standardizing by standard deviations: not recommended. Standard devi-
ations are not magic summaries of scale and they give the wrong answer
when an x is categorical (e.g., sex).

7.6.3 What are Degrees of Freedom

For a model : the total number of parameters not counting intercept(s)

For a hypothesis test : the number of parameters that are hypothesized to
equal specified constants. The constants specified are usually zeros (for
null hypotheses) but this is not always the case. Some tests involve com-
binations of multiple parameters but test this combination against a single
constant; the d.f. in this case is still one. Example: H0 : β3 = β4 is the same
as H0 : β3−β4 = 0 and is a 1 d.f. test because it tests one parameter (β3−β4)
against a constant (0).

These are numerator d.f. in the sense of the F -test in multiple linear regression.
The F -test also entails a second kind of d.f., the denominator or error d.f.,
n − p − 1, where p is the number of parameters aside from the intercept. The
error d.f. is the denominator of the estimator for σ2 that is used to unbias the
estimator, penalizing for having estimated p + 1 parameters by minimizing the
sum of squared errors used to estimate σ2 itself. You can think of the error d.f.
as the sample size penalized for the number of parameters estimated, or as a
measure of the information base used to fit the model.
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7.6.4 Hypthesis Testing
EMS 11.2

Testing Total Association (Global Null Hypotheses)

· ANOVA table is same as before for general p

· Fp,n−p−1 tests H0 : β1 = β2 = . . . = βp = 0

· This is a test of total association, i.e., a test of whether any of the predictors
is associated with y

· To assess total association we accumulate partial effects of all variables in
the model even though we are testing if any of the partial effects is nonzero

· Ha : at least one of the β’s is non-zero. Note : This does not mean that all of
the x variables are associated with y.

· Weight and smoking example: H0 tests the null hypothesis that neither weight
nor smoking is associated with y. Ha is that at least one of the two variables
is associated with y. The other may or may not have a non-zero β.

· Test of total association does not test whether cigarette smoking is related
to y holding weight constant.

· SSR can be called the model SS

Testing Partial Effects

· H0 : β1 = 0 is a test for the effect of x1 on y holding x2 and any other x’s
constant

· Note that β2 is not part of the null or alternative hypothesis; we assume that
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we have adjusted for whatever effect x2 has, if any

· One way to test β1 is to use a t-test: tn−p−1 = b1

ŝ.e.(b1)

· In multiple regression it is difficult to compute standard errors so we use a
computer

· These standard errors, like the one-variable case, decrease when

– n ↑

– variance of the variable being tested ↑

– σ2 (residual y-variance) ↓

· Another way to get partial tests: the F test

– Gives identical 2-tailed P -value to t test when one x being tested
t2 ≡ partial F

– Allows testing for > 1 variable

– Example: is either systolic or diastolic blood pressure (or both) associ-
ated with the time until a stroke, holding weight constant

· To get a partial F define partial SS

· Partial SS is the change in SS when the variables being tested are dropped
from the model and the model is re-fitted

· A general principle in regression models: a set of variables can be tested
for their combined partial effects by removing that set of variables from the
model and measuring the harm (↑ SSE) done to the model



CHAPTER 7. SIMPLE AND MULTIPLE REGRESSION MODELS 124

· Let full refer to computed values from the full model including all variables;
reduced denotes a reduced model containing only the adjustment variables
and not the variables being tested

· Dropping variables ↑ SSE, ↓ SSR unless the dropped variables had exactly
zero slope estimates in the full model (which never happens)

· SSEreduced − SSEfull = SSRfull − SSRreduced

Numberator of F test can use either SSE or SSR

· Form of partial F -test: change in SS when dropping the variables of interest
divided by change in d.f., then divided by MSE;
MSE is chosen as that which best estimates σ2, namely the MSE from the
full model

· Full model has p slopes; suppose we want to test q of the slopes

Fq,n−p−1 =
(SSEreduced − SSEfull)/q

MSE

=
(SSRfull − SSRreduced)/q

MSE

7.6.5 Assessing Goodness of Fit
EMS 12

Assumptions:

· Linearity of each predictor against y holding others constant

· σ2 is constant, independent of x

· Observations (e’s) are independent of each other
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· For proper statistical inference (CI, P -values), y (e) is normal conditional on
x

· x’s act additively; effect of xj does not depend on the other x’s (But note
that the x’s may be correlated with each other without affecting what we are
doing.)

Verifying some of the assumptions:

1. When p = 2, x1 is continuous, and x2 is binary, the pattern of y vs. x1, with
points identified by x2, is two straight, parallel lines. β2 is the slope of y vs.
x2 holding x1 constant, which is just the difference in means for x2 = 1 vs.
x2 = 0 as ∆x2 = 1 in this simple case.

2. In a residual plot (d = y − ŷ vs. ŷ) there are no systematic patterns (no trend
in central tendency, no change in spread of points with ŷ). The same is true
if one plots d vs. any of the x’s (these are more stringent assessments). If x2

is binary box plots of d stratified by x2 are effective.

3. Partial residual plots reveal the partial (adjusted) relationship between a cho-
sen xj and y, controlling for all other xi, i 6= j, without assuming linearity for
xj. In these plots, the following quantities appear on the axes:

y axis: residuals from predicting y from all predictors except xj

x axis: residuals from predicting xj from all predictors except xj (y is ig-
nored)

Partial residual plots ask how does what we can’t predict about y without
knowing xj depend on what we can’t predict about xj from the other x’s.
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x1

y

y = α + β1x1

y = α + β1x1 + β2

Figure 7.6: Data satisfying all the assumptions of simple multiple linear regression in two predictors.
Note equal spread of points around the population regression lines for the x2 = 1 and x2 = 0
groups (upper and lower lines, respectively) and the equal spread across x1. The x2 = 1 group
has a new intercept, α + β2, as the x2 effect is β2.
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7.7 Case Study: Lead Exposure and Neuro-Psychological Func tion

7.7.1 Dummy Variable for Two-Level Categorical Predictors

· Categories of predictor: A, B (for example)

· First category = reference cell, gets a zero

· Second category gets a 1.0

· Formal definition of dummy variable: x = I[category = B]

I[w] = 1 if w is true, 0 otherwise

· α + βx = α + βI[category = B] =
α for category A subjects
α + β for category B subjects
β = mean difference (B −A)

7.7.2 Two-Sample t-test vs. Simple Linear Regression

· They are equivalent in every sense:

– P -value

– Estimates and C.L.s after rephrasing the model

– Assumptions (equal variance assumption of two groups in t-test is the
same as constant variance of y|x for every x)

· a = ȲA

b = ȲB − ȲA

· ŝ.e.(b) = ŝ.e.(ȲB − ȲA)
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7.7.3 Analysis of Covariance

· Multiple regression can extend the t-test

– More than 2 groups (multiple dummy variables can do multiple-group
ANOVA)

– Allow for categorical or continuous adjustment variables (covariates, co-
variables)

· Model: MAXFWT = α + β1age + β2sex + e

· Rosner coded sex = 1, 2 for male, female
Does not affect interpretation of β2 but makes interpretation of α more tricky
(mean MAXFWT when age = 0 and sex = 0 which is impossible by this
coding.

· Better coding would have been sex = 0, 1 for male, female

– α = mean MAXFWT for a zero year-old male

– β1 = increase in mean MAXFWT per 1-year increase in age

– β2 = mean MAXFWT for females minus mean MAXFWT for males,
holding age constant

· Model: MAXFWT = α + β1CSCN2 + β2age + β3sex + e
CSCN2 = 1 for exposed, 0 for unexposed

· β1 = mean MAXFWT for exposed minus mean for unexposed, holding age

and sex constant

· Pay attention to Rosner’s
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– t and F statistics and what they test

– Figure 11.28 for checking for trend and equal variability of residuals (don’t
worry about standardizing residuals)

7.8 The Correlation Coefficient Revisited

Pearson product-moment linear correlation coefficient:

r =
Lxy

√
LxxLyy

=
sxy

sxsy

= b

√√√√Lxx

Lyy

· r is unitless

· r estimates the population correlation coefficient ρ (not to be confused with
Spearman ρ rank correlation coefficient)

· −1 ≤ r ≤ 1

· r = −1 : perfect negative correlation

· r = 1 : perfect positive correlation

· r = 0 : no correlation (no association)

· t− test for r is identical to t-test for b
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· r2 is the proportion of variation in y explained by conditioning on x

· (n− 2) r2

1−r2 = F1,n−2 = MSR
MSE

· For multiple regression in general we use R2 to denote the fraction of varia-
tion in y explained jointly by all the x’s (variation in y explained by the whole
model)

· R2 = SSR
SST

= 1− SSE
SST

= 1 minus fraction of unexplained variation

· R2 is called the coefficient of determination

· R2 is between 0 and 1

– 0 when ŷi = ȳ for all i; SSE = SST

– 1 when ŷi = yi for all i; SSE=0

· R2 ≡ r2 in the one-predictor case

7.9 Using Regression for ANOVA
EMS 9

7.9.1 Dummy Variables

Lead Exposure Group:

control : normal in both 1972 and 1973

currently exposed : elevated serum lead level in 1973, normal in 1972

previously exposed : elevated lead in 1972, normal in 1973

· Requires two dummy variables (and 2 d.f.) to perfectly describe 3 categories
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· x1 = I[currently exposed]

· x2 = I[previously exposed]

· Reference cell is control

· Model:

E(y|exposure) = α + β1x1 + β2x2

= α, controls

= α + β1, currently exposed

= α + β2, previously exposed

α : mean maxfwt for controls

β1 : mean maxfwt for currently exposed minus mean for controls

β2 : mean maxfwt for previously exposed minus mean for controls

β2 − β1 : mean for previously exposed minus mean for currently exposed

· In general requires k − 1 dummies to describe k categories

· For testing or prediction, choice of reference cell is irrelevant

· Does matter for interpreting individual coefficients

· Modern statistical programs automatically generate dummy variables from
categorical or character predictorse

· In S never generate dummy variables yourself; just tell the functions you are
using the name of the categorical predictor

eIn S dummies are generated automatically any time a factor or category variable is in the model. For SAS you must list such variables in a
CLASS statement.
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7.9.2 Obtaining ANOVA with Multiple Regression

· Estimate α, βj using standard least squares

· F -test for overall regression is exactly F for ANOVA

· In ANOVA, SSR is call sum of squares between treatments

· SSE is called sum of squares within treatments

· Don’t need to learn formulas specifically for ANOVA

7.9.3 One-Way Analysis of Covariance

· Just add other variables (covariates) to the model

· Example: predictors age and treatment
age is the covariate (adjustment variable)

· Global F test tests the global null hypothesis that neither age nor treatment
is associated with response

· To test the adjusted treatment effect, use the partial F test for treatment
based on the partial SS for treatment adjusted for age

· If treatment has only two categories, the partial t-test is an easier way to get
the age-adjusted treatment test

· In R you can use

full ← ols(y ∼ age + treat)

anova(full) # actually gives you everything needed

reduced ← ols(y ∼ age)
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anova(reduced)

# Subtract SSR or SSE from these two models to get treat effect

7.9.4 Two-Way ANOVA

· Two categorical variables as predictors

· Each variable is expanded into dummy variables

· One of the predictor variables may not be time or episode within subject; two-
way ANOVA is often misused for analyzing repeated measurements within
subject

· Example: 3 diet groups (NOR, SV, LV) and 2 sex groups

· E(y|diet, sex) = α + β1I[SV ] + β2I[LV ] + β3I[male]

· Assumes effects of diet and sex are additive (separable) and not synergistic

· β1 = SV −NOR mean difference holding sex constant
β3 = male− female effect holding diet constant

· Test of diet effect controlling for sex effect:
H0 : β1 = β2 = 0
Ha : β1 6= 0 or β2 6= 0

· This is a 2 d.f. partial F -test, best obtained by taking difference in SS be-
tween this full model and a model that excludes all diet terms.

· Test for significant difference in mean y for males vs. females, controlling for
diet:
H0 : β3 = 0
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· For a model that has m categorical predictors (only), none of which inter-
act, with numbers of categories given by k1, k2, . . . , km, the total numerator
regression d.f. is

∑m
i=1(ki − 1)

7.9.5 Two-way ANOVA and Interaction

Example: sex (F,M) and treatment (A,B)
Reference cells: F, A Model:

E(y|sex, treatment) = α + β1I[sex = M ]

+ β2I[treatment = B] + β3I[sex = M ∩ treatment = B]

Note that I[sex = M ∩ treatment = B] = I[sex = M ]× I[treatment = B].

α : mean y for female on treatment A (all variables at reference values)

β1 : mean y for males minus mean for females, both on treatment A = sex effect
holding treatment constant at A

β2 : mean for female subjects on treatment B minus mean for females on treat-
ment A = treatment effect holding sex constant at female

β3 : B − A treatment difference for males minus B − A treatment difference for
females
Same as M −F difference for treatment B minus M −F difference for treat-
ment A

In this setting think of interaction as a “double difference”. To understand the
parameters:

Group E(y|Group)

F A α

M A α + β1

F B α + β2

M B α + β1 + β2 + β3

Thus MB −MA− [FB − FA] = β2 + β3 − β2 = β3.
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7.9.6 Interaction Between Categorical and Continuous Vari ables

This is how one allows the slope of a predictor to vary by categories of another
variable. Example: separate slope for males and females:

E(y|x) = α + β1age + β2I[sex = m]

+ β3age× I[sex = m]

E(y|age, sex = f) = α + β1age

E(y|age, sex = m) = α + β1age + β2 + β3age

= (α + β2) + (β1 + β3)age

α : mean y for zero year-old female

β1 : slope of age for females

β2 : mean y for males minus mean y for females, for zero year-olds

β3 : increment in slope in going from females to males
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Multiple Groups

8.1 The k-Sample Problem
12.1

· When k = 2 we compare two means or medians, etc.

· When k > 2 we could do all possible pairwise 2-sample tests but this can be
misleading and may ↑ type I error

· Advantageous to get a single statistic testing H0: all groups have the same
distribution (or at least the same central tendency)

8.2 Parametric ANOVA
12.2

· k samples each from a normal distribution

· Population means µ1, µ2, . . . , µk

136
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· H0 : µ1 = µ2 = . . . = µk

· H1 : at least two of the population means differ

· Not placing more importance on any particular pair or combination although
large samples get more weight in the analysis

· Assume that each of the k populations has the same σ

· If k = 2 ANOVA yields identical P -value as 2-tailed 2-sample t-test

· ANOVA uses an F statistic and is always 2-tailed

· F ratio is proportional to the sum of squared differences between each sam-
ple mean and the grand mean over samples, divided by the sum of squared
differences between all raw values and the mean of the sample from which
the raw value came

· This is the SSB/SSW (sum of squares between / sum of squares within)

· SSB is identical to regression sum of squares
SSW is identical to sum of squared errors in regression

· F = MSB/MSW where

– MSB = mean square between = SSB/(k−1), k−1 = “between group d.f.”

– MSW = mean square within = SSW/(n− k), n− k = “within group d.f.”

– Evidence for different µs ↑ when differences in sample means (ignoring
direction) are large in comparison to between-patient variation
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· Can do ANOVA using multiple regression, using an intercept and k − 1
“dummy” variables indicating group membership, so memorizing formulas
specific to ANOVA is not needed

· Why is between group d.f.=k − 1?

– can pick any one group as reference group, e.g., group 1

– H0 is identical to H0 : µ2 − µ1 = µ3 − µ1 = . . . = µk − µ1 = 0

– if k − 1 differences in means are all zero, all means must be equal

– since any unique k − 1 differences define our goal, there is k − 1 d.f.
between groups for H0

8.3 Why All These Distributions?

· Normal distribution is handy for approximating the distribution of z ratios
(mean minus hypothesized value / standard error of mean) when n is large
or σ is known

· If z is normal, z2 has a χ2
1 distribution

· If add k z2 values the result has a χ2
k distribution; useful

– in larger than 2× 2 contingency tables

– in testing goodness of fit of a histogram against a theoretical distribution

– when testing more than one regression coefficient in regression models
not having a σ to estimate
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· t distribution: when σ is estimated from the data; exact P -values if data from
normal population
Distribution indexed by d.f.: tdf ; useful for

– testing one mean against a constant

– comparing 2 means

– testing one regression coefficient in multiple linear regression

· t2df has an F distribution

· F statistic can test

– > 1 regression coefficient

– > 2 groups

– whether ratio of 2 variances=1.0 (this includes MSB/MSW)

· To do this F needs two different d.f.

– numerator d.f.: how many unique differences being tested (like χ2
k)

– denominator d.f.

∗ total sample size minus the number of means or regression coeffi-
cients and intercepts estimated from the data

∗ is the denominator of the estimate of σ2

∗ also called the error or residual d.f.

· t2df = F1,df
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· ANOVA results in Fk−1,df ; d.f.=N − k where N = combined total sample size;
cf. 2-sample t-test: d.f.=n1 + n2 − 2

· Example: Ex. 12.4

F = MSB/MSW = 58 ∼ F4,1044

Use the cumulative distribution function calculator and plotter at http://

ebook.stat.ucla.edu/calculators/cdf link from our web page (surfstat
does not have the F distribution). The cumulative probability of getting an F

statistic ≤ 58 with the above d.f. is 1.0000. We want Prob(F ≥ 58), so we
get P = 1− 1 = 0 to the accuracy of the calculator but report P < 0.0001.

8.4 Software and Data Layout

· Every general-purpose statistical package does ANOVA

· Small datasets are often entered using Excel

· Statistical packages expect a grouping variable, e.g., a column of treatment
names or numbers; a column of response values for all treatments combines
is also present

· If you enter different groups’ responses in different spreadsheets or different
columns within a spreadsheet, it is harder to analyze the data with a stat
package

8.5 Comparing Specific Groups
12.4

· F test is for finding any differences but it does not reveal which groups are
different
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· Often it suffices to quote F and P , then to provide sample means (and their
confidence intervals)

· Can obtain CLs for any specific difference using previously discussed 2-
sample t-test, but this can result in inconsistent results due solely to sam-
pling variability in estimating the standard error of the difference in means
using only the two groups to estimate the common σ

· If assume that there is a common σ, estimate it using all the data Eq. 12.11

to get a pooled s2

· 1− α CL for µi − µj is then

ȳi − ȳj ± tn−k,1−α/2 × s

√√√√ 1

ni
+

1

nj
,

where n is the grand total sample size and there are respectively ni and nj

observations in samples i and j

· Can test a specific H0 : µi = µj using similar calculations; Note that the d.f.
for t comes from the grand sample size n, which ↑ power and ↓ width of CLs
slightly

· Many people use more stringent α for individual tests when testing more
than one of them (Section 8.9)

– This is not as necessary when the overall F -test is significant

8.6 Kruskal-Wallis Test

· k-sample extension to the 2-sample Wilcoxon–Mann–Whitney rank-sum test

· Is very efficient when compared to parametric ANOVA even if data are from
normal distributions
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· Has same benefits as Wilcoxon (not harmed by outliers, etc.)

· Almost testing for equality of population medians

· In general, tests whether observations in one group tend to be larger than
observations in another group (when consider randomly chosen pairs of sub-
jects)

· Test statistic obtained by replacing all responses by their ranks across all
subjects (ignoring group) and then doing an ANOVA on the ranks

· Compute F (many authors use a χ2 approximation but F gives more accu-
rate P -values)

· Look up against the F distribution with k − 1 and n− k d.f.

· Very accurate P -values except with very small samples

· Example: Ex. 12.21

F statistic from ranks in Table 12.16: F3,20 = 7.0289

· Using the cumulative distribution calculator from the web page, the prob. of
getting an F less impressive than this under H0 is 0.9979
P is 1− 0.9979 = 0.0021

· Compare with Rosner’s χ2
3 = 11.804 from which P = 0.008 by survstat or

one minus the CDF

· Evidence that not all of the 4 samples are from the same distribution

– loosely speaking, evidence for differences in medians
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– better: some rabbits have larger anti-inflammatory effects when placed
on different treatments in general

8.7 Two-Way ANOVA
12.6

· Ideal for a factorial design or observational study with 2 categorical grouping
variables

· Example: 3 treatments are given to subjects and the researcher thinks that
females and males will have different responses in general
Six means: Ȳi,j, i = treatment, j = sex group

· Can test

– whether there are treatment differences after accounting for sex effects

– whether there are sex differences after accounting for treatment effects

– whether the treatment effect is difference for females and males, if allow
treatment × sex interaction to be in the model

· Suppose there are 2 treatments (A, B) and the 4 means are ȲAf , ȲBf , ȲAm, ȲBm,
where f, m index the sex groups

· The various effects are estimated by

– treatment effect: (ȲAf−ȲBf )+(ȲAm−ȲBm)
2

– sex effect: (ȲAf−ȲAm)+(ȲBf−ȲBm)
2

– treatment × sex interaction: (ȲAf − ȲBf)− (ȲAm − ȲBm) = (ȲAf − ȲAm)−
(ȲBf − ȲBm)
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· Interactions are “double differences”

· Assessing whether treatment effect is same for m vs. f is the same as as-
sessing whether the sex effect is the same for A vs. B

· Note : 2-way ANOVA is not appropriate when one of the categorical variables
represents conditions applied to the same subjects, e.g. serially collected
data within patient with time being one of the variables;
2-way ANOVA assumes that all observations come from different subjects

8.8 Analysis of Covariance
12.5.3

· Generalizes two-way ANOVA

· Allows adjustment for continuous variables when comparing groups

· Can ↑ power and precision by reducing unexplained patient to patient vari-
ability (σ2

· When Y is also measured at baseline, adjusting for the baseline version of
Y can result in a major reduction in variance

· Fewer assumptions if adjust for baseline version of Y using ANCOVA instead
of analyzing (Y− baseline Y )

· Two-way ANOVA is a special case of ANCOVA where a categorical variable
is the only adjustment variable (it is represented in the model by dummy
variables)
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8.9 Multiple Comparisons
12.4.3

· When hypotheses are prespecified and are few in number, don’t need to
correct P -values or α level in CLs for multiple comparisons

· Multiple comparison adjustments are needed with H0 is effectively in the
form

– Is one of the 5 treatments effective when compared against control?

– Of the 4 etiologies of disease in our patients, is the treatment effective in
at least one of them?

– Is the treatment effective in either diabetics, older patients, males, . . . ,
etc.?

– Diabetics had the greatest treatment effect empirically; the usual P -value
for testing for treatment differences in diabetics was 0.03

· Recall that the probability that at least one event out of events E1, E2, . . . , Em

occurs is the sum of the probabilities if the events are mutually exclusive

· In general, the probability of at least one event is ≤ the sum of the probabili-
ties of the individual events occurring

· Let the event be “reject H0 when it is true”, i.e., making a type I error or false
positive conclusion

· If test 5 hypotheses (e.g., 5 subgroup treatment effects) at the 0.05 level, the
upper limit on the chance of finding one significant difference if there are no
differences at all is 5× 0.05 = 0.25

· This is called the Bonferroni inequality
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· If we test each H0 at the α
5 level the chance of at least one false positive is

no greater than α

· The chance of at least one false positive is the experimentwise error proba-
bility whereas the chance that a specific test is positive by chance alone is
the comparisonwise error probability

· Instead of doing each test at the α
m level we can get a conservative adjusted

P -value by multiplying an individual P -value by ma

· Whenever m× P > 1.0 report P = 1.0

· There are many specialized and slightly less conservative multiple compar-
ison adjustment procedures. Some more complex procedures are actually
more conservative than Bonferroni.

· Statisticians generally have a poor understanding about the need to not only
adjust P -values but to adjust point estimates also, when many estimates are
made and only the impressive ones (by P ) are discussed. In that case point
estimates are badly biased away from the null value. For example, the BARI
study analyzed around 20 subgroups and only found a difference in survival
between PTCA and CABG in diabetics. The hazard ratio for CABG:PTCA
estimated from this group is far too extreme.

aMake sure that m is the total number of hypotheses tested with the data, whether formally or informally.
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Statistical Inference Review

· Emphasize confidence limits, which can be computed from adjusted or un-
adjusted analyses, with or without taking into account multiple comparisons

· P -values can accompany CLs if formal hypothesis testing needed

· When possible construct P -values to be consistent with how CLs are com-
puted

9.1 Types of Analyses

· Except for one-sample tests, all tests can be thought of as testing for an
association between at least one variable with at least one other variable

· Testing for group differences is the same as testing for association between
group and response

· Testing for association between two continuous variables can be done using
correlation (especially for unadjusted analysis) or regression methods; in
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simple cases the two are equivalent

· Testing for association between group and outcome, when there are more
than 2 groups which are not in some solid ordera means comparing a sum-
mary of the response between k groups, sometimes in a pairwise fashion

9.2 Covariable-Unadjusted Analyses

Appropriate when

· Only interested in assessing the relationship between a single X and the
response, or

· Treatments are randomized and there are no strong prognostic factors that
are measureable

· Study is observational and variables capturing confounding are unavailable
(place strong caveats in the paper)

9.2.1 Analyzing Paired Responses

Type of Response Recommended Test Most Frequent Test
binary McNemar McNemar
continuous Wilcoxon signed-rank paired t-test

aThe dose of a drug or the severity of pain are examples of ordered variables.
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9.2.2 Comparing Two Groups

Type of Response Recommended Test Most Frequent Test
binary 2× 2χ2 χ2, Fisher’s exact test
ordinal Wilcoxon 2-sample Wilcoxon 2-sample
continuous Wilcoxon 2-sample 2-sample t-test
time to eventa Cox modelb log-rankc

aThe response variable may be right-censored, which happens if the subject ceased being followed before having the event. The value of the
response variable, for example, for a subject followed 2 years without having the event is 2+.

bIf the treatment is expected to have more early effect with the effect lessening over time, an accelerated failure time model such as the
lognormal model is recommended.

cThe log-rank is a special case of the Cox model. The Cox model provides slightly more accurate P -values than the χ2 statistic from the
log-rank test.

9.2.3 Comparing > 2 Groups

Type of Response Recommended Test Most Frequent Test
binary r × 2χ2 χ2, Fisher’s exact test
ordinal Kruskal-Wallis Kruskal-Wallis
continuous Kruskal-Wallis ANOVA
time to event Cox model log-rank

9.2.4 Correlating Two Continuous Variables

Recommended: Spearman ρ

Most frequently seen: Pearson r

9.3 Covariable-Adjusted Analyses

· To adjust for imbalances in prognostic factors in an observational study or
for strong patient heterogeneity in a randomized study

· Analysis of covariance is preferred over stratification, especially if continuous
adjustment variables are present or there are many adjustment variables
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– Continuous response: multiple linear regression with appropriate trans-
formation of Y

– Binary response: binary logistic regression model

– Ordinal response: proportional odds ordinal logistic regression model

– Time to event response, possibly right-censored:

∗ chronic disease: Cox proportional hazards model

∗ acute disease: accelerated failure time model
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Measuring Change

10.1 Analysis of Paired Observations

· Frequently one makes multiple observations on same experimental unit

· Can’t analyze as if independent

· When two observations made on each unit (e.g., pre–post), it is common
to summarize each pair using a measure of effect → analyze effects as if
(unpaired) raw data

· Most common: simple difference, ratio, percent change

· Can’t take effect measure for granted

· Subjects having large initial values may have largest differences

· Subjects having very small initial values may have largest post/pre ratios
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10.2 What’s Wrong with Percent Change?

· Depends on point of reference — which term is used in the denominator?

· Example:
Treatment A: 0.05 proportion having stroke
Treatment B: 0.09 proportion having stroke
Treatment A reduced proportion of stroke by 44%
Treatment B increased proportion by 80%

· Two increases of 50% result in a total increase of 125%, not 100%

· Percent change (or ratio) not a symmetric measure

· Simple difference or log ratio are symmetric

10.3 Objective Method for Choosing Effect Measure

· Goal: Measure of effect should be as independent of baseline value as pos-
siblea

· Plot difference in pre and post values vs. the average of the pre and post val-
ues. If this shows no trend, the simple differences are adequate summaries
of the effects, i.e., they are independent of initial measurements.

· If a systematic pattern is observed, consider repeating the previous step af-
ter taking logs of both the pre and post values. If this removes any systematic
relationship between the average and the difference in logs, summarize the
data using logs, i.e., take the effect measure as the log ratio.

aBecause of regression to the mean, it may be impossible to make the measure of change truly independent of the initial value. A high
initial value may be that way because of measurement error. The high value will cause the change to be less than it would have been had the
initial value been measured without error. Plotting differences against averages rather than against initial values will help reduce the effect of
regression to the mean.
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· Other transformations may also need to be examined
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Modeling for Observational Treatment
Comparisons

11.1 Propensity Score

· In observational studies comparing treatments, need to adjust for nonran-
dom treatment selection

· Number of confounding variables can be quite large

· May be too large to adjust for them using multiple regression, due to overfit-
ting (may have more potential confounders than outcome events)

· Assume that all factors related to treatment selection that are prognostic are
collected

· Use them in a flexible regression model to predict treatment actually received
(e.g., logistic model allowing nonlinear effects)

· Propensity score (PS) = estimated probability of getting treatment B vs.
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treatment A

· Use of the PS allows one to aggressively adjust for confounders by simulat-
ing a randomized trial

· Doing an adjusted analysis where the adjustment variable is the PS simulta-
neously adjusts for all the variables in the score

· If after adjusting for the score there were a residual imbalance for one of the
variables, that would imply that the variable was not correctly modeled in the
PS

· E.g.: after holding PS constant there are more subjects above age 70 in
treatment B; means that age> 70 is still predictive of treatment received
after adjusting for PS, or age> 70 was not modeled correctly.

11.2 Assessing Treatment Effect

· Eliminate patients in intervals of PS where there is no overlap between A
and B

· Many researchers stratify the PS into quintiles, get treatment differences
within the quintiles, and average these to get adjustment treatment effects

· Often results in imbalances in outer quintiles due to skewed distributions of
PS there

· Can do a matched pairs analysis but depends on matching tolerance and
many patients will be discarded when their case has already been matched

· Usually better to adjust for PS in a regression model
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· Model: Y = treat + log PS
1−PS+ nonlinear functions of log PS

1−PS+ important
prognostic variables

· Prognostic variables need to be in outcome (Y ) model even though they are
also in the PS, to account for patient heterogeneity (susceptibility bias)

· If outcome is binary and can afford to ignore prognostic variables, use non-
parametric regression to relate PS to outcome separately in actual treatment
A vs. B groups

· Plotting these two curves with PS on x-axis and looking at vertical distances
between curves is an excellent way to adjust for PS continuously without
assuming a model

11.3 Sensitivity Analysis

· For n patients in the analysis, generate n random values of a hypothetical
unmeasured confounder U

· Constrain U so that the effect of U on the response Y is given by an adjusted
odds ratio of ORY and so that U ’s distribution is unbalanced in group A vs.
B to the tune of an odds ratio of ORtreat.

· Solve for how large ORY and ORtreat must be before the adjusted treatment
effect reverses sign or changes in statistical significance

· The larger are ORY and ORtreat the less plausible it is that such an unmea-
sured confounder exists
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